## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----echo=F, message=FALSE---------------------------------------------------- withr::with_seed(42, { testdata_two_components <- GLMMcosinor::simulate_cosinor( 1000, n_period = 2, mesor = 1, amp = c(0.1, 0.4), acro = c(1, 1.5), beta.mesor = 1.1, beta.amp = c(0.4, 0.1), beta.acro = c(1, 1.2), family = "poisson", period = c(12, 6), n_components = 2 ) testdata_period_diff <- GLMMcosinor::simulate_cosinor( 1000, n_period = 1, mesor = 7, amp = c(0.1, 0.4), acro = c(1, 1.5), family = "poisson", period = c(12, 1000), n_components = 2 ) }) ## ----message=F, warning=F----------------------------------------------------- library(GLMMcosinor) object <- cglmm( vit_d ~ X + amp_acro(time, group = "X", period = 12 ), data = vitamind ) autoplot(object, x_str = "X") ## ----message=F, warning=F----------------------------------------------------- object <- cglmm( vit_d ~ X + amp_acro(time, group = "X", period = 12 ), data = vitamind ) autoplot(object, x_str = "X", superimpose.data = TRUE) ## ----echo=F, message=F-------------------------------------------------------- testdata_two_components <- simulate_cosinor( 1000, n_period = 2, mesor = 1, amp = c(0.1, 0.4), acro = c(1, 1.5), beta.mesor = 1.1, beta.amp = c(0.4, 0.1), beta.acro = c(1, 1.2), family = "poisson", period = c(12, 6), n_components = 2 ) ## ----message=F, warning=F----------------------------------------------------- testdata_two_components <- testdata_two_components testdata_two_components$X <- rbinom(length(testdata_two_components$group), 2, prob = 0.5 ) object <- cglmm( Y ~ group + amp_acro(times, n_components = 2, period = c(12, 6), group = c("group", "X") ), data = testdata_two_components, family = poisson() ) autoplot(object, predict.ribbon = FALSE) ## ----message=F, warning=F----------------------------------------------------- object <- cglmm( Y ~ group + amp_acro(times, n_components = 2, period = c(12, 6), group = c("group", "X") ), data = testdata_two_components, family = poisson() ) autoplot(object, x_str = "X", predict.ribbon = FALSE) ## ----message=F, warning=F----------------------------------------------------- object <- cglmm( Y ~ group + amp_acro(times, n_components = 2, period = c(12, 6), group = c("group", "X") ), data = testdata_two_components, family = poisson() ) autoplot(object, x_str = "group", predict.ribbon = FALSE) ## ----message=F, warning=F----------------------------------------------------- object <- cglmm( Y ~ group + amp_acro(times, n_components = 2, period = c(12, 6), group = c("group", "X") ), data = testdata_two_components, family = poisson() ) autoplot(object, x_str = "group", predict.ribbon = TRUE, xlims = c(13, 15)) ## ----eval=F------------------------------------------------------------------- # testdata_period_diff <- simulate_cosinor( # 1000, # n_period = 1, # mesor = 7, # amp = c(0.1, 0.4), # acro = c(1, 1.5), # family = "poisson", # period = c(12, 1000), # n_components = 2 # ) ## ----message=F, warning=F----------------------------------------------------- object <- cglmm( Y ~ amp_acro(times, n_components = 2, period = c(12, 1000) ), data = testdata_period_diff, family = poisson() ) autoplot(object, points_per_min_cycle_length = 40) ## ----message=F, warning=F----------------------------------------------------- model <- cglmm( vit_d ~ X + amp_acro(time, group = "X", period = 12 ), data = vitamind ) polar_plot(model) ## ----message=F, warning=F----------------------------------------------------- model <- cglmm( vit_d ~ X + amp_acro(time, group = "X", period = 12 ), data = vitamind ) polar_plot(model, radial_units = "degrees") ## ----message=F, warning=F----------------------------------------------------- model <- cglmm( vit_d ~ X + amp_acro(time, group = "X", period = 12 ), data = vitamind ) polar_plot(model, overlay_parameter_info = TRUE) ## ----message=F, warning=F----------------------------------------------------- model <- cglmm( vit_d ~ X + amp_acro(time, group = "X", period = 12 ), data = vitamind ) polar_plot(model, grid_angle_segments = 12, clockwise = TRUE, start = "top", n_breaks = 5 ) ## ----message=F, warning=F----------------------------------------------------- model <- cglmm( vit_d ~ X + amp_acro(time, group = "X", period = 12 ), data = vitamind ) polar_plot(model, grid_angle_segments = 12, clockwise = TRUE, start = "top", view = "zoom_origin" )