## ----------------------------------------------------------------------------- library(MultiATSM) ## ----ModFea, message=FALSE, echo=FALSE---------------------------------------- ModelLabels <- c("JPS original", "JPS global", "JPS multi", "GVAR single", "GVAR multi", "JLL original", "JLL No DomUnit", "JLL joint Sigma") # Rows Tab <- data.frame(matrix(nrow = length(ModelLabels), ncol = 0)) rownames(Tab) <- ModelLabels # Empty columns EmptyCol <- c("", "", "", "", "", "", "", "") Tab$EmptyCol0 <- EmptyCol # P-dynamics + 2 empty spaces Tab$PdynIndUnco <- c("x", "", "", "", "", "", "", "") Tab$PdynIndCo <- c("", "", "", "", "", "", "", "") Tab$PdynJointUnco <- c("", "x", "x", "", "", "", "", "") Tab$PdynJointJLL <- c("", "", "", "", "", "x", "x", "x") Tab$PdynJointGVAR <- c("", "", "", "x", "x", "", "", "") Tab$EmptyCol1 <- EmptyCol Tab$EmptyCol2 <- EmptyCol # Q-dynamics + 2 empty spaces Tab$QdynInd <- c("x", "x", "", "x", "", "", "", "") Tab$QdynJoint <- c("", "", "x", "", "x", "x", "x", "x") Tab$EmptyCol3 <- EmptyCol Tab$EmptyCol4 <- EmptyCol # Sigma + 2 empty spaces Tab$Ponly <- c("", "", "", "", "", "x", "x", "") Tab$PandQ <- c("x", "x", "x", "x", "x", "", "", "x") Tab$EmptyCol5 <- EmptyCol Tab$EmptyCol6 <- EmptyCol # Dominant Unit Tab$DomUnit <- c("", "", "", "", "", "x", "", "x") # Adjust column names ColNames <- c("","","","","JLL", "GVAR", "", "", "", "", "", "", "","", "", "","") colnames(Tab) <- ColNames # Generate the table suppressWarnings(library(magrittr)) kableExtra::kbl(Tab, align = "c", caption = "Model Features") %>% kableExtra::kable_classic("striped", full_width = F) %>% kableExtra::row_spec(0, font_size = 10) %>% kableExtra::add_header_above(c(" "=2, "Unrestricted" = 1, "Restricted" = 1, "Unrestricted" = 1, "Restricted" = 2, " " = 11)) %>% kableExtra::add_header_above(c(" "=2, "Individual" = 2, "Joint" = 3, " "=2, "Individual" = 1, "Joint" = 1, " "=2, "P only" = 1, "P and Q" = 1, " " = 3)) %>% kableExtra::add_header_above(c( " "=2, "P-dynamics"= 5, " "=2, "Q-dynamics"= 2, " "=2, "Sigma matrix estimation" = 2, " "=2, "Dominant Country"=1), bold = T) %>% kableExtra::pack_rows("Unrestricted VAR", 1, 3 , label_row_css = "background-color: #666; color: #fff;") %>% kableExtra::pack_rows("Restricted VAR (GVAR)", 4, 5, label_row_css = "background-color: #666; color: #fff;") %>% kableExtra::pack_rows("Restricted VAR (JLL)", 6, 8, label_row_css = "background-color: #666; color: #fff;") ## ----------------------------------------------------------------------------- LoadData("CM_2024") ## ----------------------------------------------------------------------------- data('CM_Yields') ## ----------------------------------------------------------------------------- data('CM_Factors') ## ----------------------------------------------------------------------------- data('CM_Trade') ## ----------------------------------------------------------------------------- data('CM_Factors_GVAR') ## ----------------------------------------------------------------------------- Initial_Date <- "2006-09-01" # Format "yyyy-mm-dd" Final_Date <- "2019-01-01" # Format "yyyy-mm-dd" DataFrequency <- "Monthly" GlobalVar <- c("GBC", "VIX") # Global Variables DomVar <- c("Eco_Act", "Inflation", "Com_Prices", "Exc_Rates") # Domestic variables N <- 3 # Number of spanned factors per country Economies <- c("China", "Mexico", "Uruguay", "Brazil", "Russia") ModelType <- "JPS original" ## ----------------------------------------------------------------------------- FactorLabels <- LabFac(N, DomVar, GlobalVar, Economies, ModelType) RiskFac_TS <- DataForEstimation(Initial_Date, Final_Date, Economies, N, FactorLabels, ModelType, DataFrequency) ## ----------------------------------------------------------------------------- # 1) Model type ModelType <- "JPS original" # 2) Risk factor set Economies <- c("China", "Brazil", "Mexico", "Uruguay") GlobalVar <- c("GBC", "CPI_OECD") # Global variables DomVar <- c("Eco_Act", "Inflation") # Domestic variables N <- 3 # number of spanned factors per country # 3) Sample span Initial_Date <- "01-05-2005" # Format: "dd-mm-yyyy" Final_Date <- "01-12-2019" # Format: "dd-mm-yyyy" # 4) Frequency of the data DataFrequency <- "Monthly" # 5) Risk-neutral stationary constraint StationarityUnderQ <- 0 # 1 = set stationary condition under the Q; 0 = no stationary condition # 6) Output label OutputLabel <- "Model_demo" ## ----------------------------------------------------------------------------- VARXtype <- "unconstrained" ## ----------------------------------------------------------------------------- W_type <- 'Sample Mean' # Method to compute the transition matrix t_First_Wgvar <- "2000" # First year of the sample t_Last_Wgvar <- "2015" # Last year of the sample ## ----------------------------------------------------------------------------- GVARlist <- list( VARXtype = "unconstrained", W_type = "Sample Mean", t_First_Wgvar = "2000", t_Last_Wgvar = "2015") ## ----------------------------------------------------------------------------- JLLlist <- list(DomUnit = "China") ## ----------------------------------------------------------------------------- BRWlist <- within(list(flag_mean = TRUE, gamma = 0.2, N_iter = 500, B = 50, checkBRW = TRUE, B_check = 1000), N_burn <- round(N_iter * 0.15)) ## ----eval=FALSE--------------------------------------------------------------- # data(CM_GlobalMacroFactors) # data(CM_DomMacroFactors) # data(CM_Yields) # # ModelType <- "JPS original" # Economies <- "Mexico" # t0 <- "01-05-2007" # Initial Sample Date (Format: "dd-mm-yyyy") # tF <- "01-12-2018" # Final Sample Date (Format: "dd-mm-yyyy") # N <- 3 # GlobalVar <- c("Gl_Eco_Act") # Global Variables # DomVar <- c("Eco_Act") # Domestic Variables # FactorLabels <- LabFac(N, DomVar, GlobalVar, Economies, ModelType) # # DataFreq <- "Monthly" # # ATSMInputs <- InputsForOpt(t0, tF, ModelType, Yields, GlobalMacroVar, DomesticMacroVar, # FactorLabels, Economies, DataFreq,CheckInputs = FALSE) ## ----------------------------------------------------------------------------- Horiz <- 100 ## ----------------------------------------------------------------------------- DesiredGraphs <- c("Fit", "GIRF", "GFEVD") # Available options are: "Fit", "IRF", "FEVD", "GIRF", # "GFEVD", "TermPremia". ## ----------------------------------------------------------------------------- WishGraphRiskFac <- 0 # YES: 1; No = 0. WishGraphYields <- 1 # YES: 1; No = 0. WishOrthoJLLgraphs <- 0 # YES: 1; No = 0. ## ----------------------------------------------------------------------------- WishFPremia <- 1 # Wish to estimate the forward premia: YES: 1, NO:0 FPmatLim <- c(60,120) ## ----------------------------------------------------------------------------- Bootlist <- list(methodBS = 'block', BlockLength = 4, ndraws = 50, pctg = 95) ## ----------------------------------------------------------------------------- ForecastList <- list(ForHoriz = 12, t0Sample = 1, t0Forecast = 70, ForType = "Rolling") ## ----------------------------------------------------------------------------- w <- pca_weights_one_country(Yields, Economy = "Uruguay") ## ----fig.cap = "Yield loadings on the spanned factors", echo=FALSE------------ LabSpaFac <- c("Level", "Slope", "Curvature") N <- length(LabSpaFac) w_pca <- data.frame(t(w[1:N,])) colnames(w_pca) <- LabSpaFac w_pca$mat <- c(0.25, 0.5, 1, 3, 5, 10) # vector of maturitie # Prepare plots colors <- c("Level" = "blue", "Slope" = "green", "Curvature" = "red") g <- ggplot2::ggplot(data = w_pca, ggplot2::aes(x= mat)) + ggplot2::geom_line(ggplot2::aes(y = Level, color = "Level"), linewidth = 0.7) + ggplot2::geom_line(ggplot2::aes(y = Slope, color = "Slope"), linewidth = 0.7) + ggplot2::geom_line(ggplot2::aes(y = Curvature, color = "Curvature"), linewidth = 0.7) + ggplot2::labs(color = "Legend") + ggplot2::scale_color_manual(values = colors) + ggplot2::theme_classic() + ggplot2::theme(axis.title.y= ggplot2::element_blank(), legend.position="top", legend.title=ggplot2::element_blank(), legend.text= ggplot2::element_text(size=8) ) + ggplot2::xlab("Maturity (Years)") + ggplot2::geom_hline(yintercept=0) print(g) ## ----------------------------------------------------------------------------- data('CM_Yields') Economies <- c("China", "Brazil", "Mexico", "Uruguay") N <- 3 SpaFact <- Spanned_Factors(Yields, Economies, N) ## ----------------------------------------------------------------------------- data("CM_Factors") PdynPara <- VAR(RiskFactors, VARtype= "unconstrained") ## ----------------------------------------------------------------------------- FactorsChina <- RiskFactors[1:7,] PdynPara <- VAR(FactorsChina, VARtype= "unconstrained") ## ----------------------------------------------------------------------------- GVARinputs <- list(Economies = Economies, GVARFactors = FactorsGVAR, VARXtype ="constrained: Inflation") ## ----------------------------------------------------------------------------- data("CM_Trade") t_First <- "2006" t_Last <- "2019" Economies <- c("China", "Brazil", "Mexico", "Uruguay") type <- "Sample Mean" W_gvar <- Transition_Matrix(t_First, t_Last, Economies, type, DataPath = NULL, TradeFlows) print(W_gvar) ## ----------------------------------------------------------------------------- data("CM_Factors_GVAR") GVARinputs <- list(Economies = Economies, GVARFactors = FactorsGVAR, VARXtype = "unconstrained", Wgvar = W_gvar) N <- 3 GVARpara <- GVAR(GVARinputs, N, CheckInputs = TRUE) ## ----------------------------------------------------------------------------- data('CM_Factors') StaFac <- StarFactors(RiskFactors, Economies, W_gvar) ## ----------------------------------------------------------------------------- ModelType <- "JLL original" JLLinputs <- list(Economies = Economies, DomUnit = "China", WishSigmas = 1, SigmaNonOrtho = NULL, JLLModelType = ModelType) ## ----eval=FALSE--------------------------------------------------------------- # data("CM_Factors") # N <- 3 # JLLpara <- JLL(RiskFactors, N, JLLinputs, CheckInputs = TRUE) ## ----eval=FALSE--------------------------------------------------------------- # ######################################################################################################## # #################################### USER INPUTS ####################################################### # ######################################################################################################## # # A) Load database data # LoadData("CM_2024") # # # B) GENERAL model inputs # ModelType <- "JPS multi" # available options: "JPS original", "JPS global", "GVAR single", "JPS multi", # #"GVAR multi", "JLL original", "JLL No DomUnit", "JLL joint Sigma". # # Economies <- c("China", "Brazil", "Mexico") # Names of the economies from the economic system # GlobalVar <- c("Gl_Eco_Act")# Global Variables # DomVar <- c("Eco_Act", "Inflation") # Country-specific variables # N <- 2 # Number of spanned factors per country # # t0_sample <- "01-05-2005" # Format: "dd-mm-yyyy" # tF_sample <- "01-12-2019" # Format: "dd-mm-yyyy" # # OutputLabel <- "Test" # label of the model for saving the file # DataFreq <-"Monthly" # Frequency of the data # # StatQ <- 0 # Wish to impose stationary condition for the eigenvalues of each country: YES: 1,NO:0 # # # B.1) SPECIFIC model inputs # #################################### GVAR-based models ################################################## # GVARlist <- list( VARXtype = "unconstrained", W_type = "Sample Mean", t_First_Wgvar = "2005", # t_Last_Wgvar = "2019") # # VARXtype: Available options "unconstrained" or "constrained" (VARX) # # W_type: Method to compute the transition matrix. Options:"Time-varying" or "Sample Mean" # # t_First_Wgvar: First year of the sample (transition matrix) # # t_Last_Wgvar: Last year of the sample (transition matrix) # #################################### JLL-based models ################################################### # JLLlist <- list(DomUnit = "China") # # DomUnit: name of the economy of the economic system, or "None" for the model "JLL No DomUnit" # ###################################### BRW inputs ###################################################### # WishBC <- 0 # Wish to estimate the model with the bias correction method of BRW (2012): #YES: 1, NO:0 # BRWlist <- within(list(flag_mean = TRUE, gamma = 0.05, N_iter = 250, B = 50, checkBRW = TRUE, # B_check = 1000), N_burn <- round(N_iter * 0.15)) # # flag_mean: TRUE = compute the mean; FALSE = compute the median # # gamma: Adjustment parameter # # N_iter: Number of iteration to be conserved # # N_burn: Number of iteration to be discarded # # B: Number of bootstrap samples # # checkBRW: wishes to perform closeness check: TRUE or FALSE # # B_check: If checkBRW is chosen as TRUE, then choose number of bootstrap samples used in the check # # # C) Decide on Settings for numerical outputs # WishFPremia <- 1 # Wish to estimate the forward premia: YES: 1, NO:0 # FPmatLim <- c(60,120) # If the forward premia is desired, then choose the Min and max maturities of the # # forward premia. Otherwise set NA # Horiz <- 30 # DesiredGraphs <- c("Fit", "IRF", "TermPremia") # "Fit", "IRF", "FEVD", "GIRF", "GFEVD", "TermPremia" # WishGraphRiskFac <- 0 # WishGraphYields <- 1 # WishOrthoJLLgraphs <- 0 # # # D) Bootstrap settings # WishBootstrap <- 1 # YES: 1; No = 0. # BootList <- list(methodBS = 'bs', BlockLength = 4, ndraws = 5, pctg = 95) # # methodBS: bootstrap method. Available options: (i) 'bs' ; (ii) 'wild'; (iii) 'block' # # BlockLength: Block length, necessary input for the block bootstrap method # # ndraws: number of bootstrap draws # # pctg: confidence level # # # E) Out-of-sample forecast # WishForecast <- 1 # YES: 1; No = 0. # ForecastList <- list(ForHoriz = 12, t0Sample = 1, t0Forecast = 162, ForType = "Rolling") # # ForHoriz: forecast horizon # # t0Sample: initial sample date # # t0Forecast: last sample date for the first forecast # # ForType: Available options are "Rolling" or "Expanding" # # ######################################################################################################### # ############################### NO NEED TO MAKE CHANGES FROM HERE ####################################### # ######################################################################################################### # # # 2) Minor preliminary work: get the sets of factor labels and a vector of common maturities # FactorLabels <- LabFac(N, DomVar, GlobalVar, Economies, ModelType) # if(any(ModelType == c("GVAR single", "GVAR multi"))){ GVARlist$DataConnectedness <- TradeFlows} # # # 3) Prepare the inputs of the likelihood function # ATSMInputs <- InputsForOpt(t0_sample, tF_sample, ModelType, Yields, GlobalMacroVar, DomesticMacroVar, # FactorLabels, Economies, DataFreq, GVARlist, JLLlist, WishBC, BRWlist) # # # 4) Optimization of the ATSM (Point Estimates) # ModelParaList <- Optimization(ATSMInputs, StatQ, DataFreq, FactorLabels, Economies, ModelType) # # # 5) Numerical and graphical outputs # # a) Prepare list of inputs for graphs and numerical outputs # InputsForOutputs <- InputsForOutputs(ModelType, Horiz, DesiredGraphs, OutputLabel, StatQ, DataFreq, # WishGraphYields, WishGraphRiskFac, WishOrthoJLLgraphs, WishFPremia, # FPmatLim, WishBootstrap, BootList, WishForecast, ForecastList) # # # b) Fit, IRF, FEVD, GIRF, GFEVD, and Term Premia # NumericalOutputs <- NumOutputs(ModelType, ModelParaList, InputsForOutputs, FactorLabels, Economies) # # # c) Confidence intervals (bootstrap analysis) # BootstrapAnalysis <- Bootstrap(ModelType, ModelParaList, NumericalOutputs, Economies, InputsForOutputs, # FactorLabels, JLLlist, GVARlist, WishBC, BRWlist) # # # 6) Out-of-sample forecasting # Forecasts <- ForecastYields(ModelType, ModelParaList, InputsForOutputs, FactorLabels, Economies, # JLLlist, GVARlist, WishBC, BRWlist)