## ----------------------------------------------------------------------------- library(QFASA) library(dplyr) library(compositions) ## ----------------------------------------------------------------------------- data(FAset) fa.set = as.vector(unlist(FAset)) ## ----------------------------------------------------------------------------- data(predatorFAs) tombstone.info = predatorFAs[,1:4] predator.matrix = predatorFAs[,5:(ncol(predatorFAs))] npredators = nrow(predator.matrix) ## ----------------------------------------------------------------------------- data(preyFAs) prey.matrix = preyFAs[,-c(1,3)] # Selecting 5 prey species to include spec.red <-c("capelin", "herring", "mackerel", "pilchard", "sandlance") spec.red <- sort(spec.red) prey.red <- prey.matrix %>% filter(Species %in% spec.red) ## ----------------------------------------------------------------------------- FC = preyFAs[,c(2,3)] FC = FC %>% arrange(Species) FC.vec = tapply(FC$lipid,FC$Species,mean,na.rm=TRUE) FC.red <- FC.vec[spec.red] ## ----------------------------------------------------------------------------- data(CC) cal.vec = CC[,2] cal.m = replicate(npredators, cal.vec) rownames(cal.m) <- CC$FA ## ----eval=FALSE--------------------------------------------------------------- # M <- p.MUFASA(predator.matrix, prey.red, cal.m, FC.red, fa.set) ## ----eval=FALSE--------------------------------------------------------------- # Diet_Estimates <- M$Diet_Estimates ## ----eval=FALSE--------------------------------------------------------------- # nll <- M$nll ## ----eval=FALSE--------------------------------------------------------------- # VarEps <- M$Var_Epsilon