## ----echo=FALSE------------------------------------------------------------------------- req_suggested_packages <- c("see", "performance", "ggplot2") pcheck <- lapply(req_suggested_packages, requireNamespace, quietly = TRUE) if (any(!unlist(pcheck))) { message("Required package(s) for this vignette are not available/installed and code will not be executed.") knitr::opts_chunk$set(eval = FALSE) } ## ----set-options, echo=FALSE, cache=FALSE----------------------------------------------- options(width = 90) knitr::opts_chunk$set(dpi=72) ## ----message=FALSE---------------------------------------------------------------------- library(afex) library(performance) # for assumption checks ## --------------------------------------------------------------------------------------- data(obk.long, package = "afex") o1 <- aov_ez("id", "value", obk.long, between = c("treatment", "gender")) check_homogeneity(o1) ## --------------------------------------------------------------------------------------- data("fhch2010", package = "afex") a1 <- aov_ez("id", "log_rt", fhch2010, between = "task", within = c("density", "frequency", "length", "stimulus")) ## --------------------------------------------------------------------------------------- check_sphericity(a1) ## ----eval = FALSE----------------------------------------------------------------------- # afex_options( # correction_aov = "GG", # or "HF" # emmeans_model = "multivariate" # ) ## --------------------------------------------------------------------------------------- data("stroop", package = "afex") stroop1 <- subset(stroop, study == 1) stroop1 <- na.omit(stroop1) s1 <- aov_ez("pno", "rt", stroop1, within = c("condition", "congruency")) is_norm <- check_normality(s1) plot(is_norm) plot(is_norm, type = "qq") ## --------------------------------------------------------------------------------------- plot(is_norm, type = "qq", detrend = TRUE) ## --------------------------------------------------------------------------------------- s2 <- aov_ez("pno", "rt", stroop1, transformation = "log", within = c("condition", "congruency")) is_norm <- check_normality(s2) plot(is_norm, type = "qq", detrend = TRUE)