## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( fig.height = 6, fig.width = 7, collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(biplotEZ) ## ----------------------------------------------------------------------------- biplot(state.x77) |> CVA(classes = state.region) |> plot() ## ----------------------------------------------------------------------------- biplot(state.x77) |> CVA(classes = state.region) |> alpha.bags() |> legend.type (bags = TRUE) |> plot() ## ----------------------------------------------------------------------------- biplot(state.x77, scaled = TRUE) |> CVA(classes = state.division) |> legend.type(means = TRUE) |> plot() ## ----------------------------------------------------------------------------- biplot(state.x77, scaled = TRUE) |> CVA(classes = state.division) |> means(label = TRUE, col = "olivedrab", pch = 15) |> plot() ## ----------------------------------------------------------------------------- biplot(state.x77, scaled = TRUE) |> CVA(classes = state.division) |> means (which = c("West North Central", "West South Central", "East South Central", "East North Central"), label = TRUE) |> plot() ## ----------------------------------------------------------------------------- biplot(state.x77, scaled = TRUE) |> CVA(classes = state.division) |> means (col = "olivedrab", pch = 15, cex = 1.5, label = TRUE, label.col = c("blue","green","gold","cyan","magenta", "black","red","grey","purple")) |> plot() ## ----------------------------------------------------------------------------- biplot(state.x77, scaled = TRUE) |> CVA(classes = state.division) |> samples (label = "ggrepel", label.cex=0.65) |> means (label = "ggrepel", label.cex=0.8) |> plot() ## ----------------------------------------------------------------------------- biplot(state.x77, scaled = TRUE) |> CVA(classes = state.division) |> classify(classify.regions = TRUE,opacity = 0.2) |> plot() ## ----------------------------------------------------------------------------- obj <- biplot(state.x77, scaled = TRUE) |> CVA(classes = state.division) |> fit.measures() |> plot() summary (obj) ## ----------------------------------------------------------------------------- obj <- biplot(state.x77, scaled = TRUE) |> CVA(classes = state.region) |> fit.measures() summary (obj, adequacy = FALSE, within.class.axis.predictivity = FALSE, within.class.sample.predictivity = FALSE) ## ----------------------------------------------------------------------------- state.2group <- ifelse(state.division == "New England" | state.division == "Middle Atlantic" | state.division == "South Atlantic" | state.division == "Pacific", "Coastal", "Central") biplot (state.x77) |> CVA (state.2group) |> legend.type(means=TRUE) |> plot() ## ----------------------------------------------------------------------------- biplot (state.x77) |> CVA (state.2group, low.dim="Bha") |> legend.type(means=TRUE) |> plot() ## ----------------------------------------------------------------------------- biplot(state.x77, scaled = TRUE) |> AoD(classes = state.region) |> plot() ## ----------------------------------------------------------------------------- biplot(state.x77, scaled = TRUE) |> AoD(classes = state.region, axes = "splines") |> plot() ## ----------------------------------------------------------------------------- biplot(state.x77, scaled = TRUE) |> AoD(classes = state.region, axes = "splines", dist.func=sqrtManhattan) |> plot()