
Package ‘clusterMI’
October 23, 2024

Encoding UTF-8

Type Package

Title Cluster Analysis with Missing Values by Multiple Imputation

Version 1.2.2

Date 2024-10-22

Description Allows clustering of incomplete observations by addressing missing values using multi-
ple imputation. For achieving this goal, the methodology consists in three steps, following Au-
digier and Niang 2022 <doi:10.1007/s11634-022-00519-1>. I) Missing data imputation us-
ing dedicated models. Four multiple imputation methods are pro-
posed, two are based on joint modelling and two are fully sequential methods, as dis-
cussed in Audigier et al. (2021) <doi:10.48550/arXiv.2106.04424>. II) cluster analysis of im-
puted data sets. Six clustering methods are available (distances-based or model-based), but cus-
tom methods can also be easily used. III) Partition pooling. The set of partitions is aggregated us-
ing Non-negative Matrix Factorization based method. An associated instability measure is com-
puted by boot-
strap (see Fang, Y. and Wang, J., 2012 <doi:10.1016/j.csda.2011.09.003>). Among applica-
tions, this instability measure can be used to choose a number of clusters with missing values.
The package also proposes several diagnostic tools to tune the number of im-
puted data sets, to tune the number of iterations in fully sequential imputa-
tion, to check the fit of imputation models, etc.

License GPL-2 | GPL-3

Depends R (>= 3.5.0)

Imports stats, graphics, parallel, mice, micemd, mclust, mix, fpc,
knockoff, withr, glmnet, ClusterR, FactoMineR, diceR,
NPBayesImputeCat, e1071, Rfast, cat, utils, ggplot2, gridExtra,
reshape2, methods, Rcpp

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, stargazer, VIM, missMDA, clustrd,
clusterCrit, bookdown

VignetteBuilder knitr

LazyData true

LinkingTo Rcpp, RcppArmadillo

1

https://doi.org/10.1007/s11634-022-00519-1
https://doi.org/10.48550/arXiv.2106.04424
https://doi.org/10.1016/j.csda.2011.09.003

2 clusterMI-package

RcppModules IO_module

NeedsCompilation yes

Author Vincent Audigier [aut, cre] (CNAM MSDMA team),
Hang Joon Kim [ctb] (University of Cincinnati)

Maintainer Vincent Audigier <vincent.audigier@cnam.fr>

Repository CRAN

Date/Publication 2024-10-23 13:40:02 UTC

Contents
clusterMI-package . 2
chooseB . 3
choosem . 5
choosemaxit . 7
choosenbclust . 8
chooser . 9
clusterMI . 12
fastnmf . 15
imputedata . 17
overimpute . 19
prodna . 22
varselbest . 22
wine . 25

Index 27

clusterMI-package clusterMI: Cluster Analysis with Missing Values by Multiple Imputa-
tion

Description

clusterMI is an R package to perform clustering with missing values. For achieving this goal,
multiple imputation is used. The package offers various multiple imputation methods dedicated to
clustered individuals, as discussed in Audigier et al. (2021) <arXiv:2106.04424>. In addition, it
allows pooling results both in terms of partition and instability, as proposed in Audigier and Niang
(2022) <doi:10.1007/s11634-022-00519-1>. Among applications, this instability measure can be
used to choose a number of clusters with missing values.

References

Audigier, V. and Niang, N., Clustering with missing data: which equivalent for Rubin’s rules?
Advances in Data Analysis and Classification <doi:10.1007/s11634-022-00519-1>, 2022.

Audigier, V., Niang, N., & Resche-Rigon, M. (2021). Clustering with missing data: which imputa-
tion model for which cluster analysis method?. arXiv preprint <arXiv:2106.04424>.

chooseB 3

Audigier, V. (2024). Clustering on incomplete data using clusterMI. 10emes Rencontres R, Vannes,
France. hal preprint <hal:04550305>.

Bar-Hen, A. and Audigier, V., An ensemble learning method for variable selection: application
to high dimensional data and missing values, Journal of Statistical Computation and Simulation,
<doi:10.1080/00949655.2022.2070621>, 2022.

Fang, Y. and Wang, J., Selection of the number of clusters via the bootstrap method. Computational
Statistics and Data Analysis, 56, 468-477 <doi:10.1016/j.csda.2011.09.003> 2012.

Examples

data(wine)

require(parallel)
set.seed(123456)
ref <- wine$cult
nb.clust <- 3
wine.na <- wine
wine.na$cult <- NULL
wine.na <- prodna(wine.na)

imputation
m <- 5 # number of imputed data sets. Should be larger in practice
res.imp <- imputedata(data.na = wine.na, nb.clust = nb.clust, m = m)

cluster analysis by kmeans and pooling
nnodes <- 2 # Number of CPU cores for parallel computing
res.pool <- clusterMI(res.imp, nnodes = nnodes)

res.pool$instability
table(ref, res.pool$part)

choice of nb.clust

res.nbclust <- choosenbclust(res.pool)
res.nbclust$nb.clust

chooseB Diagnostic plot for the number of iterations used in the varselbest
function

Description

chooseB plots the proportion of times an explanatory variable is selected according to the number
of iterations (B).

4 chooseB

Usage

chooseB(
res.varselbest,
plotvar = NULL,
linewidth = 1,
linetype = "dotdash",
xlab = "B",
ylab = "Proportion",
nrow = 2,
ncol = 2,
graph = TRUE

)

Arguments

res.varselbest an output from the varselbest function

plotvar index of variables for which a curve is ploted

linewidth a numerical value setting the widths of lines

linetype what type of plot should be drawn

xlab a title for the x axis

ylab a title for the y axis

nrow argument of gtable. Default value is 2.

ncol argument of gtable. Default value is 2.

graph a boolean. If FALSE, no graphics are ploted. Default value is TRUE

Details

varselbest performs variable selection on random subsets of variables and, then, combines them
to recover which explanatory variables are related to the response, following Bar-Hen and Audigier
(2022) <doi:10.1080/00949655.2022.2070621>. More precisely, the outline of the algorithm are
as follows: let consider a random subset of sizeblock among p variables. Then, any selection
variables scheme can be applied. By resampling B times, a sample of size sizeblock among the
p variables, we may count how many times a variable is considered as significantly related to the
response and how many times it is not. The number of iterations B should be large so that the
proportion of times a variable is selected becomes stable. chooseB plots the values of proportion
according to the number of iterations.

Value

a list of matrices where each row corresponds to the vector of proportions (for all explanatory
variables) obtained for a given value of B

References

Bar-Hen, A. and Audigier, V., An ensemble learning method for variable selection: application
to high dimensional data and missing values, Journal of Statistical Computation and Simulation,
<doi:10.1080/00949655.2022.2070621>, 2022.

choosem 5

See Also

varselbest

Examples

data(wine)

require(parallel)
ref <- wine$cult
nb.clust <- 3
wine.na<-wine
wine.na$cult <- NULL
wine.na <- prodna(wine.na)

nnodes <- 2 # Number of CPU cores for parallel computing
B <- 80 # Number of iterations for variable selection

variable selection

res.varsel <- varselbest(data.na = wine.na,
listvar = "alco",
B = B,
nnodes = nnodes,
nb.clust = nb.clust,
graph = FALSE)

convergence
res.chooseB <- chooseB(res.varsel)

choosem Graphical investigation for the number of datasets generated by mul-
tiple imputation

Description

For an object generated by the function clusterMI, the choosem function browses the sequence of
the contributory partitions and computes the consensus partition at each step. Then, the rand index
between successive consensus partitions is plotted.

Usage

choosem(output, graph = TRUE, nnodes = 1)

Arguments

output an output from the clusterMI function

graph a boolean indicating if a graphic is plotted

nnodes number of CPU cores for parallel computing. By default nnodes = 1.

6 choosem

Details

The number of imputed datasets (m) should be sufficiently large to improve the partition accuracy.
The choosem function can be used to check if this number is suitable. This function computes the
consensus partition by considering only the first imputed datasets. By this way, a sequence of m
consensus partitions is obtained. Then, the rand index between successive partitions is computed
and reported in a graph. The rand index measures the proximity between two partitions. If the rand
index between the last consensus partitions of the sequence reaches its maximum values (1), then it
means last imputed dataset does not modify the consensus partition. Consequently, the number of
imputed datasets can be considered as sufficiently large.

Value

A list of two objects

part m-columns matrix that contains in column p the consensus partition using only
the p first imputed datasets

rand a m-1 vector given the rand index between the m successive consensus partitions

References

Audigier, V. and Niang, N., Clustering with missing data: which equivalent for Rubin’s rules?
Advances in Data Analysis and Classification <doi:10.1007/s11634-022-00519-1>, 2022.

See Also

clusterMI, imputedata

Examples

data(wine)

set.seed(123456)
ref <- wine$cult
nb.clust <- 3
wine.na <- wine
wine.na$cult <- NULL
wine.na <- prodna(wine.na)

#imputation
m <- 5 # number of imputed data sets. Should be larger in practice
res.imp <- imputedata(data.na = wine.na, nb.clust = nb.clust, m = m)

#pooling
nnodes <- 2 # number of CPU cores for parallel computing
res.pool <- clusterMI(res.imp, instability = FALSE, nnodes = nnodes)

res.choosem <- choosem(res.pool)

choosemaxit 7

choosemaxit Diagnostic plot for the number of iterations used in sequential impu-
tation methods

Description

The choosemaxit function plots the within and between variance for each variable (specified in
plotvars) against the iteration number for each of the replications (specified in plotm).

Usage

choosemaxit(
output,
plotvars = NULL,
plotm = 1:5,
size = 0.5,
linewidth = 1,
linetype = "dotdash",
xlab = "iterations",
ylab = "var",
title = "Within and between variance plots",
nvar_by_row = 5

)

Arguments

output an outpout from the imputedata function

plotvars index of variables for which a curve is plotted

plotm a vector indicating which imputed datasets must be plotted

size size of points

linewidth a numerical value setting the widths of lines

linetype what type of plot should be drawn

xlab a title for the x axis

ylab a title for the y axis

title the main title

nvar_by_row the number of variables that are plotted per window. Default value is 5.

Value

No return value

8 choosenbclust

Examples

data(wine)
set.seed(123456)
wine.na <- wine
wine.na$cult <- NULL
wine.na <- prodna(wine.na)
nb.clust <- 3 # number of clusters
m <- 3 # number of imputed data sets
maxit <- 50 # number of iterations for FCS imputation

res.imp <- imputedata(data.na = wine.na, method = "FCS-homo",
nb.clust = nb.clust, m = m, maxit = maxit)

choosemaxit(res.imp)

choosenbclust Tune the number of clusters according to the partition instability

Description

choosenbclust reports the cluster instability according to the number of clusters chosen.

Usage

choosenbclust(output, grid = 2:5, graph = TRUE, verbose = TRUE, nnodes = NULL)

Arguments

output an output from the clusterMI function

grid a vector indicating the grid of values tested for nb.clust. By default 2:5

graph a boolean indicating if a graphic is plotted

verbose if TRUE, choosenbclust will print messages on console

nnodes number of CPU cores for parallel computing. By default, the value used in the
call to the clusterMI function

Details

The choosenbclust function browses a grid of values for the number of clusters and for each one
imputes the data and computes the instability.

Value

a list of two objects

nb.clust the number of clusters in grid minimizing the instability

crit a vector indicating the instability for each value in the grid

chooser 9

References

Audigier, V. and Niang, N., Clustering with missing data: which equivalent for Rubin’s rules?
Advances in Data Analysis and Classification <doi:10.1007/s11634-022-00519-1>, 2022.

See Also

imputedata

Examples

data(wine)

require(parallel)
set.seed(123456)
ref <- wine$cult
nb.clust <- 3
wine.na <- wine
wine.na$cult <- NULL
wine.na <- prodna(wine.na)

imputation
res.imp <- imputedata(data.na=wine.na, nb.clust = nb.clust, m = 5)

pooling
nnodes <- 2 # number of CPU cores for parallel computing
res.pool <- clusterMI(res.imp, nnodes = nnodes, instability = FALSE)

choice of nb.clust

choosenbclust(res.pool)

chooser Kfold cross-validation for specifying threshold r

Description

chooser returns a list specifying the optimal threshold r for each outcome as well as the associated
set of explanatory variables selected, and the cross-validation errror for each value of the grid

Usage

chooser(
res.varsel,
K = 10,
seed = 12345,
listvar = NULL,
grid.r = seq(0, 1, 1/1000),

10 chooser

graph = TRUE,
printflag = TRUE,
nb.clust = NULL,
nnodes = NULL,
sizeblock = NULL,
method.select = NULL,
B = NULL,
modelNames = NULL,
nbvarused = NULL,
path.outfile = NULL

)

Arguments

res.varsel an output from the varselbest function

K an integer given the number of folds

seed a integer

listvar a vector of characters specifiying variables (outcomes) for which cross-validation
should be done. By default, all variables that have been considered for varselbest
are used.

grid.r a grid for the tuning parameter r

graph a boolean. If TRUE, cross-validation results are printed

printflag a boolean. If TRUE, messages are printed

nb.clust number of clusters. By default, the same as the one used in varselbest

nnodes an integer specifying the number of nodes for parallel computing. By default,
the same as the one used in varselbest

sizeblock number of sampled variables at each iteration. By default, the same as the one
used in varselbest

method.select variable selection method used. By default, the same as the one used in varselbest

B number of iterations. By default, the same as the one used in varselbest

modelNames mixture model specification for imputation of subsets. By default, the same as
the one used in varselbest

nbvarused a maximal number of selected variables (can be required for a dataset with a
large number of variables)

path.outfile a path for message redirection

Details

varselbest performs variable selection on random subsets of variables and, then, combines them
to recover which explanatory variables are related to the response. More precisely, the outline of
the algorithm are as follows: let consider a random subset of sizeblock among p variables. By
choosing sizeblock small, this subset is low dimensional, allowing treatment of missing values by
standard imputation method for clustered individuals. Then, any selection variable scheme can be
applied (lasso, stepwise and knockoff are proposed by tuning the method.select argument). By
resampling B times, a sample of size sizeblock among the p variables, we may count how many

chooser 11

times, a variable is considered as significantly related to the response and how many times it is
not. We need to define a threshold (r) to conclude if a given variable is significantly related to the
response. chooser aims at finding the optimal value for the threshold r using Kfold cross-validation.

Value

A list where each object refers to an outcome variable called in the listvar argument. Each element
is composed of three objects

r the optimal value for the threshold

error the cross-validation error for each value in grid.r

selection the subset of selected variables for the optimal threshold

References

Bar-Hen, A. and Audigier, V., An ensemble learning method for variable selection: application
to high dimensional data and missing values, Journal of Statistical Computation and Simulation,
<doi:10.1080/00949655.2022.2070621>, 2022.

Schafer, J. L. (1997) Analysis of Incomplete Multivariate Data. Chapman & Hall, Chapter 9.

Examples

data(wine)

require(parallel)
set.seed(123456)
ref <- wine$cult
nb.clust <- 3
wine.na <- wine
wine.na$cult <- NULL
wine.na <- prodna(wine.na)

nnodes <- 2 # parallel::detectCores()
B <- 100 # Number of iterations
m <- 5 # Number of imputed data sets

variables selection for incomplete variable "alco"
listvar <- "alco"
res.varsel <- varselbest(data.na = wine.na,

nb.clust = nb.clust,
listvar = listvar,
B = B,
nnodes = nnodes)

frequency of selection
propselect <- res.varsel$proportion[listvar,]

#predictormatrix with the default threshold value
predictmat <- res.varsel$predictormatrix

12 clusterMI

r optimal and associated predictor matrix
res.chooser <- chooser(res.varsel = res.varsel)
thresh <- res.chooser[[listvar]]$r
is.selected <- propselect>=thresh
predictmat[listvar, names(is.selected)] <- as.numeric(is.selected)

imputation
res.imp.select <- imputedata(data.na = wine.na, method = "FCS-homo",

nb.clust = nb.clust, predictmat = predictmat, m = m)

clusterMI Cluster analysis and pooling after multiple imputation

Description

From a list of imputed datasets clusterMI performs cluster analysis on each imputed data set,
estimates the instability of each partition using bootstrap (following Fang, Y. and Wang, J., 2012
<doi:10.1016/j.csda.2011.09.003>) and pools results as proposed in Audigier and Niang (2022)
<doi:10.1007/s11634-022-00519-1>.

Usage

clusterMI(
output,
method.clustering = "kmeans",
method.consensus = "NMF",
scaling = TRUE,
nb.clust = NULL,
Cboot = 50,
method.hclust = "average",
method.dist = "euclidean",
modelNames = NULL,
modelName.hc = "VVV",
nstart.kmeans = 100,
iter.max.kmeans = 10,
m.cmeans = 2,
samples.clara = 500,
nnodes = 1,
instability = TRUE,
verbose = TRUE,
parameter.nmf = list(method.init = c("BOK", "kmeans"), threshold = 10^(-5), printflag =

FALSE, parameter.kmeans = list(nstart = 100, iter.max = 50, algorithm =
c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"), trace = FALSE),

parameter.minibatchkmeans = list(batch_size = 10, num_init = 1, max_iters = 50,
init_fraction = 1, initializer = "kmeans++", early_stop_iter = 10, verbose = FALSE,

clusterMI 13

CENTROIDS = NULL, tol = 1e-04, tol_optimal_init = 0.3, seed = 1))
)

Arguments

output an output from the imputedata function
method.clustering

a single string specifying the clustering algorithm used ("kmeans", "pam", "clara",
"hclust" or "mixture","cmeans")

method.consensus

a single string specifying the consensus method used to pool the contributory
partitions ("NMF" or "CSPA")

scaling boolean. If TRUE, variables are scaled. Default value is TRUE

nb.clust an integer specifying the number of clusters

Cboot an integer specifying the number of bootstrap replications. Default value is 50

method.hclust character string defining the clustering method for hierarchical clustering (re-
quired only if method.clustering = "hclust")

method.dist character string defining the method use for computing dissimilarity matrices in
hierarchical clustering (required only if method.clustering = "hclust")

modelNames character string indicating the models to be fitted in the EM phase of clustering
(required only if method.clustering = "mixture"). By default modelNames =
NULL.

modelName.hc A character string indicating the model to be used in model-based agglomera-
tive hierarchical clustering.(required only if method.clustering = "mixture"). By
default modelNames.hc = "VVV".

nstart.kmeans how many random sets should be chosen for kmeans initalization. Default value
is 100 (required only if method.clustering = "kmeans")

iter.max.kmeans

how many iterations should be chosen for kmeans. Default value is 10 (required
only if method.clustering = "kmeans")

m.cmeans degree of fuzzification in cmeans clustering. By default m.cmeans = 2

samples.clara number of samples to be drawn from the dataset when performing clustering
using clara algorithm. Default value is 500.

nnodes number of CPU cores for parallel computing. By default, nnodes = 1

instability a boolean indicating if cluster instability must be computed. Default value is
TRUE

verbose a boolean. If TRUE, a message is printed at each step. Default value is TRUE

parameter.nmf a list of arguments for consensus by NMF. See the fastnmf help page.

Details

clusterMI performs cluster analysis (according to the method.clustering argument) and pooling
after multiple imputation. For achieving this goal, the clusterMI function uses as an input an output
from the imputedata function and then

14 clusterMI

1. applies the cluster analysis method on each imputed data set
2. pools contributory partitions using non-negative matrix factorization
3. computes the instability of each partition by bootstrap
4. computes the total instability

Step 1 can be tuned by specifying the cluster analysis method used (method.clustering argu-
ment). If method.clustering = "kmeans" or "pam", then the number of clusters can be specified
by tuning the nb.clust argument. By default, the same number as the one used for imputation
is used. The number of random initializations can also be tuned through the nstart.kmeans
argument. If method.clustering = "hclust" (hierarchical clustering), the method used can be
specified (see hclust). By default "average" is used. Furthermore, the number of clusters can
be specified, but it can also be automatically chosen if nb.clust < 0. If method.clustering =
"mixture" (model-based clustering using gaussian mixture models), the model to be fitted can be
tuned by modifying the modelNames argument (see Mclust). If method.clustering = "cmeans"
(clustering using the fuzzy c-means algorithm), then the fuzziness parameter can be modfied by
tuning them.cmeans argument. By default, m.cmeans = 2.
Step 2 performs consensus clustering by Non-Negative Matrix Factorization, following Li and Ding
(2007) <doi:10.1109/ICDM.2007.98>.
Step 3 applies the nselectboot function on each imputed data set and returns the instability of
each cluster obtained at step 1. The method is based on bootstrap sampling, followong Fang, Y. and
Wang, J. (2012) <doi:10.1016/j.csda.2011.09.003>. The number of iterations can be tuned using
the Cboot argument.
Step 4 averages the previous instability measures given a within instability (Ubar), computes a
between instability (B) and a total instability (T = B + Ubar). See Audigier and Niang (2022)
<doi:10.1007/s11634-022-00519-1> for details.
All steps can be performed in parallel by specifying the number of CPU cores (nnodes argument).
Steps 3 and 4 are more time consuming. To compute only steps 1 and 2 use instability = FALSE.

Value

A list with three objects

part the consensus partition
instability a list of four objects: U the within instability measure for each imputed data set,

Ubar the associated average, B the between instability measure, Tot the total
instability measure

call the matching call

References

Audigier, V. and Niang, N. (2022) Clustering with missing data: which equivalent for Rubin’s rules?
Advances in Data Analysis and Classification <doi:10.1007/s11634-022-00519-1>
Fang, Y. and Wang, J. (2012) Selection of the number of clusters via the bootstrap method. Com-
putational Statistics and Data Analysis, 56, 468-477. <doi:10.1016/j.csda.2011.09.003>
T. Li, C. Ding, and M. I. Jordan (2007) Solving consensus and semi-supervised clustering prob-
lems using nonnegative matrix factorization. In Proceedings of the 2007 Seventh IEEE Inter-
national Conference on Data Mining, ICDM’07, page 577-582, USA. IEEE Computer Society.
<doi:10.1109/ICDM.2007.98>

fastnmf 15

See Also

hclust, nselectboot, Mclust, imputedata, cmeans

Examples

data(wine)

require(parallel)
set.seed(123456)
ref <- wine$cult
nb.clust <- 3
m <- 5 # number of imputed data sets. Should be larger in practice
wine.na <- wine
wine.na$cult <- NULL
wine.na <- prodna(wine.na)

#imputation
res.imp <- imputedata(data.na = wine.na, nb.clust = nb.clust, m = m)

#analysis by kmeans and pooling
nnodes <- 2 # parallel::detectCores()
res.pool <- clusterMI(res.imp, nnodes = nnodes)

res.pool$instability
table(ref, res.pool$part)

fastnmf Consensus clustering using non-negative matrix factorization

Description

From a list of partitions fastnmf pools partition as proposed in Li and Ding (2007) <doi:10.1109/ICDM.2007.98>.

Usage

fastnmf(
listpart,
nb.clust,
method.init = c("BOK", "kmeans"),
threshold = 10^(-5),
printflag = TRUE,
parameter.kmeans = list(nstart = 100, iter.max = 50, algorithm = c("Hartigan-Wong",

"Lloyd", "Forgy", "MacQueen"), trace = FALSE),
parameter.minibatchkmeans = list(batch_size = 10, num_init = 1, max_iters = 50,
init_fraction = 1, initializer = "kmeans++", early_stop_iter = 10, verbose = FALSE,
CENTROIDS = NULL, tol = 1e-04, tol_optimal_init = 0.3, seed = 1)

)

16 fastnmf

Arguments

listpart a list of partitions

nb.clust an integer specifying the number of clusters

method.init a vector giving initialisation methods used among "BOK", "kmeans", "mini-
batchkmeans" "sample". See details.

threshold a real specifying when the NMF algorithm is stoped. Default value is 10^(-5)

printflag a boolean. If TRUE, nmf will print messages on console. Default value is TRUE
parameter.kmeans

a list of arguments for kmeans function. See keans help page.
parameter.minibatchkmeans

list of arguments for MiniBatchKmeans function. See MiniBatchKmeans help
page.

Details

fastnmf performs consensus clustering using non-negative matrix factorization following Li and
Ding (2007) <doi:10.1109/ICDM.2007.98>. The set of partitions that are aggregated needs to be
given as a list where each element is a vector of numeric values. Note that the number of classes for
each partition can vary. The number of classes for the consensus partition should be given using the
nb.clust argument. The NMF algorithm is iterative and required an initial partition. This latter is
specified by method.init. method.init="BOK" means the partition considered is a partition from
listpart which minimizes the NMF criterion. Alternative methods are "kmeans", "minibathck-
means" or "sample". If method.init = "kmeans" (or "minibatchkmeans"), then clustering on the
average of connectivity matrices is performed by kmeans (or "minibatchkmeans"). Mini Batch
Kmeans could be faster than kmeans if the number of invididuals is large. If method.init = "sam-
ple", then a random partition is drawn. If method.init is a vector of several characters, then several
initialization methods are considered and the best method is returned. By default, method.init=
c("BOK", "kmeans").

Value

For each initialisation method, a list of 5 objets is returned

Htilde A fuzzy disjunctive table

S A positive matrix

Mtilde The average of connectivity matrices

crit A vector with the optimized criterion at each iteration

cluster the consensus partition in nb.clust classes

In addition, the best initialisation method is returned

References

T. Li, C. Ding, and M. I. Jordan (2007) Solving consensus and semi-supervised clustering prob-
lems using nonnegative matrix factorization. In Proceedings of the 2007 Seventh IEEE Inter-
national Conference on Data Mining, ICDM’07, page 577-582, USA. IEEE Computer Society.
<doi:10.1109/ICDM.2007.98>

imputedata 17

See Also

kmeans MiniBatchKmeans

Examples

data(wine)
require(clustrd)
set.seed(123456)
ref <- wine$cult
nb.clust <- 3
m <- 3 # number of imputed data sets. Should be larger in practice
wine.na <- wine
wine.na$cult <- NULL
wine.na <- prodna(wine.na)

#imputation
res.imp <- imputedata(data.na = wine.na, nb.clust = nb.clust, m = m)

#analysis using reduced kmeans

apply the cluspca function on each imputed data set
res.ana.rkm <- lapply(res.imp$res.imp,

FUN = cluspca,
nclus = nb.clust,
ndim = 2,
method= "RKM")

extract the set of partitions (under "list" format)
res.ana.rkm <-lapply(res.ana.rkm,"[[","cluster")

pooling by NMF
res.pool.rkm <- fastnmf(res.ana.rkm, nb.clust = nb.clust)
extract the partition corresponding to the best initialisation
part <- res.pool.rkm$best$clust

imputedata Multiple imputation methods for cluster analysis

Description

imputedata returns a list of imputed datasets by using imputation methods dedicated to individuals
clustered in (unknown) groups

Usage

imputedata(
data.na,
method = "JM-GL",
nb.clust = NULL,

18 imputedata

m = 20,
maxit = 50,
Lstart = 100,
L = 20,
method.mice = NULL,
predictmat = NULL,
verbose = TRUE,
seed = 1234,
bootstrap = FALSE

)

Arguments

data.na an incomplete dataframe

method a single string specifying the imputation method used among "FCS-homo","FCS-
hetero","JM-DP","JM-GL". By default method = "JM-GL". See the details sec-
tion

nb.clust number of clusters

m number of imputed datasets. By default, m = 20.

maxit number of iterations for FCS methods (only used for method = FCS-homo or
method = FCS-hetero)

Lstart number of iterations for the burn-in period (only used if method ="JM-DP" or
"JM-GL")

L number of skipped iterations to keep one imputed data set after the burn-in pe-
riod (only used if method ="JM-DP" or "JM-GL")

method.mice a vector of strings (or a single string) giving the imputation method for each
variable (only used for method = FCS-homo or method = FCS-hetero). Default
value is "pmm" (predictive mean matching) for FCS-homo and "mice.impute.2l.jomo"
for FCS-hetero

predictmat predictor matrix used for FCS imputation (only used for method = FCS-homo
or method = FCS-hetero)

verbose a boolean. If TRUE, a message is printed at each iteration. Use verbose =
FALSE for silent imputation

seed a positive integer initializing the random generator

bootstrap a boolean. Use bootstrap = TRUE for proper imputation with FCS methods
(Mclust sometimes fails with multiple points)

Details

The imputedata offers various multiple imputation methods dedicated to clustered individuals.
In particular, two fully conditional imputation methods are proposed (FCS-homo and FCS-hetero)
which essentially differ by the assumption about the covariance in each cluster (constant or not re-
spectively). The imputation requires a pre-specified number of clusters (nb.clust). See choosenbclust
if this number is unknown. The imputedata function alternates clustering and imputation given the
partition of individuals. When the clustering is performed, the function calls the mice function
from the mice R package to perform imputation. The mice package proposes various methods

overimpute 19

for imputation which can be specified by tuning the method.mice argument. Note that two other
joint modelling methods are also available: JM-GL from the R package mix and JM-DP from the R
package DPImputeCont https://github.com/hang-j-kim/DPImputeCont

Value

a list of 3 objets

res.imp a list with the several imputed datasets

res.conv for FCS methods, an array given the between (and within) inertia of each im-
puted variable at each iteration and for each imputed dataset. For JM methods,
a matrix given the between inertia for each variable and each imputed dataset.

call the matching call

References

Kim, H. J., Reiter, J. P., Wang, Q., Cox, L. H. and Karr, A. F. (2014), Multiple imputation of missing
or faulty values under linear constraints, Journal of Business and Economics Statistics, 32, 375-386
<doi:10.1080/07350015.2014.885435>

Schafer, J. L. (1997) Analysis of Incomplete Multivariate Data. Chapman & Hall, Chapter 9.

Audigier, V., Niang, N., & Resche-Rigon, M. (2021). Clustering with missing data: which imputa-
tion model for which cluster analysis method?. arXiv preprint <arXiv:2106.04424>.

See Also

mice choosenbclust choosemaxit varselbest imp.mix

Examples

data(wine)
set.seed(123456)
wine.na <- wine
wine.na$cult <- NULL
wine.na <- prodna(wine.na)
nb.clust <- 3 # number of clusters
m <- 20 # number of imputed data sets
res.imp <- imputedata(data.na = wine.na, nb.clust = nb.clust, m = m)
lapply(res.imp$res.imp, summary)

overimpute Overimputation diagnostic plot

Description

overimpute assesses the fit of the predictive distribution after performing multiple imputation with
the imputedata function

https://github.com/hang-j-kim/DPImputeCont

20 overimpute

Usage

overimpute(
res.imputedata,
plotvars = NULL,
plotinds = NULL,
nnodes = 2,
path.outfile = NULL,
alpha = 0.1,
mfrow = NULL,
mar = c(5, 4, 4, 2) - 1.9

)

Arguments

res.imputedata an output from the imputedata function

plotvars column index of the variables overimputed

plotinds row index of the individuals overimputed

nnodes an integer indicating the number of nodes for parallel calculation. Default value
is 2

path.outfile a vector of strings indicating the path for redirection of print messages. De-
fault value is NULL, meaning that silent imputation is performed. Otherwise,
print messages are saved in the files path.outfile/output.txt. One file per node is
generated.

alpha alpha level for prediction intervals

mfrow a vector of the form c(nr, nc)

mar a numerical vector of the form c(bottom, left, top, right)

Details

This function imputes each observed value from each conditional imputation model obtained from
the imputedata function. The comparison between the "overimputed" values and the observed val-
ues is made by building a confidence interval for each observed value using the quantiles of the
overimputed values (see Blackwell et al. (2015) <doi:10.1177/0049124115585360>). Note that
confidence intervals built with quantiles require a large number of imputations. If the model fits well
the data, then the 90% confidence interval should contain the observed value in 90% of the cases.
The function overimpute takes as an input an output of the imputedata function (res.imputedata
argument), the indices of the incomplete continuous variables that are plotted (plotvars), the in-
dices of individuals (can be useful for time consuming imputation methods), the number of CPU
cores for parallel computation, and the path for exporting print message generated during the paral-
lel process (path.outfile).

Value

A list of two matrices

res.plot 7-columns matrix that contains (1) the variable which is overimputed, (2) the
observed value of the observation, (3) the mean of the overimputations, (4) the

overimpute 21

lower bound of the confidence interval of the overimputations, (5) the upper
bound of the confidence interval of the overimputations, (6) the proportion of
the other variables that were missing for that observation in the original data,
and (7) the color for graphical representation

res.values a matrix with overimputed values for each cell. The number of columns corre-
sponds to the number of values generated (i.e. the number of imputed datasets)

References

Blackwell, M., Honaker, J. and King. G. 2015. A Unified Approach to Measurement Error and
Missing Data: Overview and Applications. Sociological Methods and Research, 1-39. <doi:10.1177/0049124115585360>

Examples

data(wine)

require(parallel)
set.seed(123456)
ref <- wine$cult
nb.clust <- 3
wine.na <- wine
wine.na$cult <- NULL
wine.na <- prodna(wine.na)

nnodes <- 2 # Number of CPU cores used for parallel computation

Multiple imputation using m = 100 (should be larger in practice)

res.imp.over <- imputedata(data.na = wine.na,
nb.clust = nb.clust,
m = 100)

Overimputation

overimputed variable
plotvars <- "alco"

selection of 20 complete individuals on variable "alco"
plotinds <- sample(which(!is.na(wine.na[, plotvars])),

size = 20)
overimputation
res.over <- overimpute(res.imp.over,

nnodes = nnodes,
plotvars = plotvars,
plotinds = plotinds,
)

22 varselbest

prodna Introduce missing values using a missing completely at random mech-
anism

Description

prodna generates an incomplete dataset by removing a proportion of observed values

Usage

prodna(X, pct = 0.3)

Arguments

X a data frame (or matrix).

pct proportion of missing values. By default pct = 0.3.

Value

an incomplete data frame

Examples

n <- 1000
p <- 5
X <- matrix(runif(n*p), nrow = n, ncol = p)
summary(X)
X.na <- prodna(X)
colMeans(is.na(X.na))

varselbest Variable selection for specifying conditional imputation models

Description

varselbest performs variable selection from an incomplete dataset (see Bar-Hen and Audigier
(2022) <doi:10.1080/00949655.2022.2070621>) in order to specify the imputation models to use
for FCS imputation methods

varselbest 23

Usage

varselbest(
data.na = NULL,
res.imputedata = NULL,
listvar = NULL,
nb.clust = NULL,
nnodes = 1,
sizeblock = 5,
method.select = "knockoff",
B = 200,
r = 0.3,
graph = TRUE,
printflag = TRUE,
path.outfile = NULL,
mar = c(2, 4, 2, 0.5) + 0.1,
cex.names = 0.7,
modelNames = NULL

)

Arguments

data.na a dataframe with only numeric variables

res.imputedata an output from imputedata

listvar a character vector indicating for which subset of incomplete variables variable
selection must be performed. By default all column names.

nb.clust the number of clusters used for imputation

nnodes number of CPU cores for parallel computing. By default, nnodes = 1

sizeblock an integer indicating the number of variables sampled at each iteration

method.select a single string indicating the variable selection method applied on each subset
of variables

B number of iterations, by default B = 200

r a numerical vector (or a single real number) indicating the threshold used for
each variable in listvar. Each value of r should be between 0 and 1. See details.

graph a boolean. If TRUE two graphics are plotted per variable in listvar: a graphic
reporting the variable importance measure of each explanatory variable and a
graphic reporting the influence of the number iterations (B) on the importance
measures

printflag a boolean. If TRUE, a message is printed at each iteration. Use printflag =
FALSE for silent selection.

path.outfile a vector of strings indicating the path for redirection of print messages. De-
fault value is NULL, meaning that silent imputation is performed. Otherwise,
print messages are saved in the files path.outfile/output.txt. One file per node is
generated.

mar a numerical vector of the form c(bottom, left, top, right). Only used if graph =
TRUE

24 varselbest

cex.names expansion factor for axis names (bar labels) (only used if graph = TRUE)

modelNames a vector of character strings indicating the models to be fitted in the EM phase
of clustering

Details

varselbest performs variable selection on random subsets of variables and, then, combines them
to recover which explanatory variables are related to the response. More precisely, the outline of
the algorithm are as follows: let consider a random subset of sizeblock among p variables. By
choosing sizeblock small, this subset is low dimensional, allowing treatment of missing values by
standard imputation method for clustered individuals. Then, any selection variable scheme can be
applied (lasso, stepwise and knockoff are proposed by tuning the method.select argument). By
resampling B times, a sample of size sizeblock among the p variables, we may count how many
times, a variable is considered as significantly related to the response and how many times it is
not. We need to define a threshold (r) to conclude if a given variable is significantly related to the
response.

Value

a list of four objects

predictormatrix

a numeric matrix containing 0 and 1 specifying on each line the set of predictors
to be used for each target column of the incomplete dataset.

res.varsel a list given details on the variable selection procedure (only required for check-
ing convergence by the chooseB function)

proportion a numeric matrix of proportion indicating on each line the variable importance
of each predictor

call the matching call

References

Bar-Hen, A. and Audigier, V., An ensemble learning method for variable selection: application
to high dimensional data and missing values, Journal of Statistical Computation and Simulation,
<doi:10.1080/00949655.2022.2070621>, 2022.

See Also

mice,clusterMI, imputedata,knockoff,glmnet,imp.mix

Examples

data(wine)

require(parallel)
set.seed(123456)
ref <- wine$cult
nb.clust <- 3
wine.na <- wine

wine 25

wine.na$cult <- NULL
wine.na <- prodna(wine.na)

nnodes <- 2 # parallel::detectCores()
B <- 150 # Number of iterations
m <- 5 # Number of imputed data sets

variable selection
res.varsel <- varselbest(data.na = wine.na,

nb.clust = nb.clust,
listvar = c("alco","malic"),
B = B,
nnodes = nnodes)

predictmat <- res.varsel$predictormatrix

imputation
res.imp.select <- imputedata(data.na = wine.na, method = "FCS-homo",

nb.clust = nb.clust, predictmat = predictmat, m = m)

wine Chemical analysis of wines from three different cultivars

Description

Data are the results of a chemical analysis of wines grown in the same region in Italy but derived
from three different cultivars. The analysis determined the quantities of 13 constituents found in
each of the three types of wines

Usage

data(wine)

Format

A data frame with 178 rows and 14 variables:

cult Cultivar

alco Alcohol

malic Malic acid

ash Ash

alca Alcalinity of ash

mg Magnesium

phe Total phenols

fla Flavanoids

26 wine

nfla Nonflavanoid phenols

pro Proanthocyanins

col Color intensity

hue Hue

ratio OD280/OD315 of diluted wines

prol Proline

Source

https://archive.ics.uci.edu/ml/datasets/wine

References

M. Forina, C. Armanino, M. Castino and M. Ubigli. Vitis, 25:189-201 (1986)

https://archive.ics.uci.edu/ml/datasets/wine

Index

∗ datasets
wine, 25

chooseB, 3
choosem, 5
choosemaxit, 7, 19
choosenbclust, 8, 18, 19
chooser, 9
clusterMI, 6, 12, 24
clusterMI-package, 2
cmeans, 15

fastnmf, 15

glmnet, 24

hclust, 14, 15

imp.mix, 19, 24
imputedata, 6, 9, 15, 17, 19, 20, 23, 24

kmeans, 17
knockoff, 24

Mclust, 14, 15
mice, 18, 19, 24
MiniBatchKmeans, 17

nselectboot, 14, 15

overimpute, 19

prodna, 22

varselbest, 5, 19, 22

wine, 25

27

	clusterMI-package
	chooseB
	choosem
	choosemaxit
	choosenbclust
	chooser
	clusterMI
	fastnmf
	imputedata
	overimpute
	prodna
	varselbest
	wine
	Index

