## ----echo=FALSE--------------------------------------------------------------- library(knitr) opts_chunk$set(tidy = FALSE, dev = "pdf", message = FALSE, fig.align = "center", cache = FALSE) ## ----------------------------------------------------------------------------- library(dtComb) ## ----eval = TRUE, echo=TRUE--------------------------------------------------- data(exampleData1) head(exampleData1) ## ----------------------------------------------------------------------------- # # train set from the exampleData1 set.seed(2128) inTrain <- caret::createDataPartition(exampleData1$group, p = 3 / 4, list = FALSE) trainData <- exampleData1[inTrain, ] head(trainData) ## ----------------------------------------------------------------------------- # # test set from the exampleData1 set.seed(2128) testData <- exampleData1[-inTrain, -1] ## ----------------------------------------------------------------------------- markers <- trainData[, -1] status <- factor(trainData$group, levels = c("not_needed", "needed")) ## ----fig.height=4.8, fig.width=5---------------------------------------------- set.seed(2128) # linComb Function fit.lin <- linComb( markers = markers, status = status, event = "needed", method = "scoring", resample = "cv", standardize = "range", ndigits = 2, direction = "auto", cutoff.method = "Youden" ) ## ----fig.height=4.8, fig.width=5---------------------------------------------- # nonlinComb Function set.seed(2128) fit.nonlin <- nonlinComb( markers = markers, status = status, event = "needed", method = "lassoreg", include.interact = "TRUE", resample = "boot", direction = "auto", cutoff.method = "Youden" ) ## ----fig.height=4.8, fig.width=5---------------------------------------------- # mlComb Function set.seed(2128) fit.ml <- mlComb( markers = markers, status = status, event = "needed", method = "knn", resample = "repeatedcv", nfolds = 10, nrepeats = 5, preProcess = c("center", "scale"), direction = "<", cutoff.method = "Youden" ) ## ----fig.height=4.8, fig.width=5---------------------------------------------- # mathComb Function fit.math <- mathComb( markers = markers, status = status, event = "needed", method = "distance", distance = "euclidean", direction = "<", cutoff.method = "Youden" ) ## ----------------------------------------------------------------------------- predict(fit.nonlin, testData) ## ----------------------------------------------------------------------------- sessionInfo()