## ----setup, include = FALSE--------------------------------------------------- library(ecocbo) knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.retina=2, fig.align='center', fig.width = 7, fig.height = 5, warning = FALSE, message = FALSE ) ## ----step0, eval=FALSE-------------------------------------------------------- # # Load data and adjust it. # data(epiDat) # # simResults <- prep_data(data = epiDat, type = "counts", Sest.method = "average", # cases = 5, N = 100, sites = 10, # n = 5, m = 5, k = 30, # transformation = "none", method = "bray", # dummy = FALSE, useParallel = TRUE) ## ----step1-------------------------------------------------------------------- compVar <- scompvar(data = simResults) compVar ## ----step21------------------------------------------------------------------- cboCost <- sim_cbo(comp.var = compVar, ct = 20000, ck = 100, cj = 2500) cboCost ## ----step22------------------------------------------------------------------- cboPrecision <- sim_cbo(comp.var = compVar, multSE = 0.10, ck = 100, cj = 2500) cboPrecision ## ----step3-------------------------------------------------------------------- betaResult <- sim_beta(simResults, alpha = 0.05) betaResult ## ----step4-------------------------------------------------------------------- plot_power(data = betaResult, n = NULL, m = 3, method = "both")