
Package ‘ergm’
November 6, 2024

Version 4.7.5

Date 2024-11-06

Title Fit, Simulate and Diagnose Exponential-Family Models for
Networks

Depends R (>= 4.1), network (>= 1.18.2)

Imports robustbase (>= 0.95-1), coda (>= 0.19-4.1), trust (>= 0.1-8),
lpSolveAPI (>= 5.5.2.0-17.12), statnet.common (>= 4.10.0), rle
(>= 0.9.2), purrr (>= 1.0.2), rlang (>= 1.1.4), memoise (>=
2.0.1), tibble (>= 3.2.1), magrittr (>= 2.0.3), Rdpack (>=
2.6.1), knitr (>= 1.48), stringr (>= 1.5.1), parallel, methods

Suggests latticeExtra (>= 0.6-30), sna (>= 2.8), rmarkdown (>= 2.28),
testthat (>= 3.2.1.1), ergm.count (>= 4.1.2), withr (>= 3.0.1),
covr (>= 3.6.4), Rglpk (>= 0.6-5.1), slam (>= 0.1-53),
networkLite (>= 1.0.5), lattice

RdMacros Rdpack

BugReports https://github.com/statnet/ergm/issues

Description An integrated set of tools to analyze and simulate networks based on exponential-
family random graph models (ERGMs). 'ergm' is a part of the Statnet suite of packages for net-
work analysis. See Hunter, Handcock, Butts, Goodreau, and Mor-
ris (2008) <doi:10.18637/jss.v024.i03> and Krivitsky, Hunter, Mor-
ris, and Klumb (2023) <doi:10.18637/jss.v105.i06>.

License GPL-3 + file LICENSE

License_is_FOSS yes

License_restricts_use no

URL https://statnet.org

VignetteBuilder knitr

RoxygenNote 7.3.2.9000

Config/testthat/parallel true

Config/testthat/edition 3

Config/build/clean-inst-doc FALSE

1

https://github.com/statnet/ergm/issues
https://doi.org/10.18637/jss.v024.i03
https://doi.org/10.18637/jss.v105.i06
https://statnet.org

2

Encoding UTF-8

Collate 'InitErgmConstraint.R' 'InitErgmConstraint.blockdiag.R'
'InitErgmConstraint.hints.R' 'InitErgmProposal.R'
'InitErgmProposal.dyadnoise.R' 'InitErgmReference.R'
'ergm-deprecated.R' 'InitErgmTerm.R' 'InitErgmTerm.auxnet.R'
'InitErgmTerm.bipartite.R' 'InitErgmTerm.bipartite.degree.R'
'InitErgmTerm.blockop.R' 'InitErgmTerm.coincidence.R'
'InitErgmTerm.dgw_sp.R' 'InitErgmTerm.extra.R'
'InitErgmTerm.indices.R' 'InitErgmTerm.interaction.R'
'InitErgmTerm.operator.R' 'InitErgmTerm.spcache.R'
'InitErgmTerm.test.R' 'InitErgmTerm.transitiveties.R'
'InitWtErgmProposal.R' 'InitWtErgmTerm.R'
'InitWtErgmTerm.operator.R' 'InitWtErgmTerm.test.R'
'anova.ergm.R' 'anova.ergmlist.R'
'approx.hotelling.diff.test.R' 'as.network.numeric.R'
'build_term_index.R' 'check.ErgmTerm.R' 'control.ergm.R'
'control.ergm.bridge.R' 'control.gof.R' 'control.logLik.ergm.R'
'control.san.R' 'control.simulate.R' 'data.R' 'ergm-defunct.R'
'ergm-internal.R' 'ergm-options.R' 'ergm-package.R'
'ergm-terms-index.R' 'ergm.CD.fixed.R' 'ergm.Cprepare.R'
'ergm.MCMCse.R' 'ergm.MCMLE.R' 'ergm.R' 'ergm.allstats.R'
'ergm.auxstorage.R' 'ergm.bounddeg.R' 'ergm.bridge.R'
'ergm.design.R' 'ergm.errors.R' 'ergm.estimate.R' 'ergm.eta.R'
'ergm.etagrad.R' 'ergm.etagradmult.R' 'ergm.etamap.R'
'ergm.geodistn.R' 'ergm.getCDsample.R' 'ergm.getMCMCsample.R'
'ergm.getnetwork.R' 'ergm.initialfit.R' 'ergm.llik.R'
'ergm.llik.obs.R' 'ergm.logitreg.R' 'ergm.mple.R'
'ergm.pen.glm.R' 'ergm.phase12.R' 'ergm.pl.R' 'ergm.san.R'
'ergm.stepping.R' 'ergm.stocapprox.R' 'ergm.utility.R'
'ergmMPLE.R' 'ergm_estfun.R' 'ergm_keyword.R' 'ergm_model.R'
'ergm_model.utils.R' 'ergm_mplecov.R' 'ergm_proposal.R'
'ergm_response.R' 'ergm_state.R' 'ergmlhs.R' 'formula.utils.R'
'get.node.attr.R' 'godfather.R' 'gof.ergm.R' 'is.curved.R'
'is.dyad.independent.R' 'is.inCH.R' 'is.na.ergm.R'
'is.valued.R' 'logLik.ergm.R' 'mcmc.diagnostics.ergm.R'
'network.list.R' 'network.update.R' 'nonidentifiability.R'
'nparam.R' 'obs.constraints.R' 'parallel.utils.R'
'param_names.R' 'predict.ergm.R' 'print.ergm.R'
'print.network.list.R' 'print.summary.ergm.R'
'rank_test.ergm.R' 'rlebdm.R' 'simulate.ergm.R'
'simulate.formula.R' 'summary.ergm.R' 'summary.ergm_model.R'
'summary.network.list.R' 'summary.statistics.network.R'
'to_ergm_Cdouble.R' 'vcov.ergm.R' 'wtd.median.R' 'zzz.R'

NeedsCompilation yes

Author Mark S. Handcock [aut],
David R. Hunter [aut],
Carter T. Butts [aut],
Steven M. Goodreau [aut],

Contents 3

Pavel N. Krivitsky [aut, cre] (<https://orcid.org/0000-0002-9101-3362>),
Martina Morris [aut],
Li Wang [ctb],
Kirk Li [ctb],
Skye Bender-deMoll [ctb],
Chad Klumb [ctb],
Michał Bojanowski [ctb] (<https://orcid.org/0000-0001-7503-852X>),
Ben Bolker [ctb],
Christian Schmid [ctb],
Joyce Cheng [ctb],
Arya Karami [ctb],
Adrien Le Guillou [ctb] (<https://orcid.org/0000-0002-4791-418X>)

Maintainer Pavel N. Krivitsky <pavel@statnet.org>

Repository CRAN

Date/Publication 2024-11-06 14:10:05 UTC

Contents
.dyads-ergmConstraint . 8
absdiff-ergmTerm . 8
absdiffcat-ergmTerm . 9
altkstar-ergmTerm . 10
anova.ergm . 11
approx.hotelling.diff.test . 12
as.network.numeric . 13
asymmetric-ergmTerm . 15
atleast-ergmTerm . 16
atmost-ergmTerm . 17
attrcov-ergmTerm . 17
B-ergmTerm . 18
b1concurrent-ergmTerm . 19
b1cov-ergmTerm . 20
b1degrange-ergmTerm . 20
b1degree-ergmTerm . 21
b1degrees-ergmConstraint . 22
b1dsp-ergmTerm . 22
b1factor-ergmTerm . 23
b1mindegree-ergmTerm . 24
b1nodematch-ergmTerm . 24
b1sociality-ergmTerm . 26
b1star-ergmTerm . 26
b1starmix-ergmTerm . 27
b1twostar-ergmTerm . 28
b2concurrent-ergmTerm . 29
b2cov-ergmTerm . 30
b2degrange-ergmTerm . 30
b2degree-ergmTerm . 31

https://orcid.org/0000-0002-9101-3362
https://orcid.org/0000-0001-7503-852X
https://orcid.org/0000-0002-4791-418X

4 Contents

b2degrees-ergmConstraint . 32
b2dsp-ergmTerm . 32
b2factor-ergmTerm . 33
b2mindegree-ergmTerm . 34
b2nodematch-ergmTerm . 34
b2sociality-ergmTerm . 35
b2star-ergmTerm . 36
b2starmix-ergmTerm . 37
b2twostar-ergmTerm . 38
balance-ergmTerm . 39
bd-ergmConstraint . 39
Bernoulli-ergmReference . 40
blockdiag-ergmConstraint . 40
blocks-ergmConstraint . 41
check.ErgmTerm . 42
cohab . 43
coincidence-ergmTerm . 44
concurrent-ergmTerm . 45
concurrentties-ergmTerm . 46
control.ergm . 46
control.ergm.bridge . 60
control.gof . 63
control.san . 66
control.simulate.ergm . 68
ctriple-ergmTerm . 73
Curve-ergmTerm . 74
cycle-ergmTerm . 75
cyclicalties-ergmTerm . 76
cyclicalweights-ergmTerm . 76
degcor-ergmTerm . 77
degcrossprod-ergmTerm . 78
degrange-ergmTerm . 78
degree-ergmTerm . 79
degree1.5-ergmTerm . 80
degreedist . 80
degreedist-ergmConstraint . 81
degrees-ergmConstraint . 82
density-ergmTerm . 82
diff-ergmTerm . 83
DiscUnif-ergmReference . 84
dsp-ergmTerm . 84
dyadcov-ergmTerm . 86
dyadnoise-ergmConstraint . 86
Dyads-ergmConstraint . 87
ecoli . 88
edgecov-ergmTerm . 89
edges-ergmConstraint . 89
edges-ergmTerm . 90

Contents 5

egocentric-ergmConstraint . 90
enformulate.curved-deprecated . 91
equalto-ergmTerm . 92
ergm . 93
ergm-options . 101
ergm-parallel . 102
ergm.allstats . 105
ergm.bridge.llr . 107
ergm.design . 110
ergm.getnetwork . 110
ergm.godfather . 111
ergmConstraint . 114
ergmHint . 118
ergmKeyword . 119
ergmMPLE . 120
ergmProposal . 123
ergmReference . 125
ergmTerm . 126
ergm_MCMC_sample . 150
ergm_plot.mcmc.list . 153
ergm_state_cache . 154
ergm_symmetrize . 155
esp-ergmTerm . 156
Exp-ergmTerm . 158
F-ergmTerm . 158
faux.desert.high . 159
faux.dixon.high . 160
faux.magnolia.high . 162
faux.mesa.high . 163
fix.curved . 165
fixallbut-ergmConstraint . 166
fixedas-ergmConstraint . 167
florentine . 167
For-ergmTerm . 168
g4 . 170
geweke.diag.mv . 171
gof . 172
greaterthan-ergmTerm . 175
gwb1degree-ergmTerm . 176
gwb1dsp-ergmTerm . 177
gwb2degree-ergmTerm . 178
gwb2dsp-ergmTerm . 179
gwdegree-ergmTerm . 180
gwdsp-ergmTerm . 180
gwesp-ergmTerm . 182
gwidegree-ergmTerm . 183
gwnsp-ergmTerm . 184
gwodegree-ergmTerm . 186

6 Contents

hamming-ergmConstraint . 187
hamming-ergmTerm . 187
idegrange-ergmTerm . 188
idegree-ergmTerm . 189
idegree1.5-ergmTerm . 189
idegreedist-ergmConstraint . 190
idegrees-ergmConstraint . 190
ininterval-ergmTerm . 191
intransitive-ergmTerm . 191
is.curved . 192
is.dyad.independent . 193
is.valued . 194
isolatededges-ergmTerm . 195
isolates-ergmTerm . 195
istar-ergmTerm . 196
kapferer . 196
kstar-ergmTerm . 197
Label-ergmTerm . 198
localtriangle-ergmTerm . 199
Log-ergmTerm . 199
logLik.ergm . 200
logLikNull . 202
m2star-ergmTerm . 203
mcmc.diagnostics . 203
meandeg-ergmTerm . 205
mm-ergmTerm . 206
molecule . 207
mutual-ergmTerm . 207
nearsimmelian-ergmTerm . 208
network.list . 209
nodal_attributes . 210
nodecov-ergmTerm . 213
nodecovar-ergmTerm . 214
nodefactor-ergmTerm . 215
nodeicov-ergmTerm . 216
nodeicovar-ergmTerm . 217
nodeifactor-ergmTerm . 217
nodematch-ergmTerm . 218
NodematchFilter-ergmTerm . 219
nodemix-ergmTerm . 220
nodeocov-ergmTerm . 221
nodeocovar-ergmTerm . 222
nodeofactor-ergmTerm . 222
nparam . 223
nsp-ergmTerm . 224
observed-ergmConstraint . 225
odegrange-ergmTerm . 226
odegree-ergmTerm . 227

Contents 7

odegree1.5-ergmTerm . 227
odegreedist-ergmConstraint . 228
odegrees-ergmConstraint . 228
Offset-ergmTerm . 229
opentriad-ergmTerm . 229
ostar-ergmTerm . 230
param_names . 230
predict.formula . 231
Prod-ergmTerm . 233
rank_test.ergm . 234
receiver-ergmTerm . 235
S-ergmTerm . 236
samplk . 236
sampson . 238
san . 240
search.ergmTerms . 245
sender-ergmTerm . 247
simmelian-ergmTerm . 248
simmelianties-ergmTerm . 248
simulate.ergm . 249
simulate.formula . 256
smalldiff-ergmTerm . 257
smallerthan-ergmTerm . 258
snctrl . 259
sociality-ergmTerm . 261
sparse-ergmHint . 262
spectrum0.mvar . 262
StdNormal-ergmReference . 263
strat-ergmHint . 264
Sum-ergmTerm . 265
sum-ergmTerm . 266
summary.ergm . 266
summary.formula . 269
Symmetrize-ergmTerm . 270
threetrail-ergmTerm . 271
transitive-ergmTerm . 272
transitiveties-ergmTerm . 272
transitiveweights-ergmTerm . 273
triadcensus-ergmTerm . 273
triadic-ergmHint . 274
triangle-ergmTerm . 275
tripercent-ergmTerm . 276
ttriple-ergmTerm . 277
twopath-ergmTerm . 278
Unif-ergmReference . 278
update.network . 279
wtd.median . 280

Index 282

8 absdiff-ergmTerm

.dyads-ergmConstraint A meta-constraint indicating handling of arbitrary dyadic constraints

Description

This is a flag in the proposal table indicating that the proposal can enforce arbitrary combinations
of dyadic constraints. It cannot be invoked directly by the user.

See Also

ergmConstraint for index of constraints and hints currently visible to the package.

Keywords: None

absdiff-ergmTerm Absolute difference in nodal attribute

Description

This term adds one network statistic to the model equaling the sum of abs(attr[i]-attr[j])^pow
for all edges (i,j) in the network.

Usage

binary: absdiff(attr,
pow=1)

valued: absdiff(attr,
pow=1,
form="sum")

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

pow power to which to take the absolute difference
form character how to aggregate tie values in a valued ERGM

Note

ergm versions 3.9.4 and earlier used different arguments for this term. See ergm-options for how
to invoke the old behaviour.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, dyad-independent, quantitative nodal attribute, undirected, binary, valued

absdiffcat-ergmTerm 9

absdiffcat-ergmTerm Categorical absolute difference in nodal attribute

Description

This term adds one statistic for every possible nonzero distinct value of abs(attr[i]-attr[j])
in the network. The value of each such statistic is the number of edges in the network with the
corresponding absolute difference.

Usage

binary: absdiffcat(attr,
base=NULL,
levels=NULL)

valued: absdiffcat(attr,
base=NULL,
levels=NULL,
form="sum")

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

base deprecated

levels specifies which nonzero difference to include in or exclude from the model. (See
Specifying Vertex attributes and Levels (?nodal_attributes) for details.)

form character how to aggregate tie values in a valued ERGM

Note

ergm versions 3.9.4 and earlier used different arguments for this term. See ergm-options for how
to invoke the old behaviour.

The argument base is retained for backwards compatibility and may be removed in a future version.
When both base and levels are passed, levels overrides base.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, directed, dyad-independent, undirected, binary, valued

10 altkstar-ergmTerm

altkstar-ergmTerm Alternating k-star

Description

Add one network statistic to the model equal to a weighted alternating sequence of k-star statistics
with weight parameter lambda.

Usage

binary: altkstar(lambda,
fixed=FALSE)

Arguments

lambda weight parameter to model

fixed indicates whether the decay parameter is fixed at the given value, or is to be fit
as a curved exponential family model (see Hunter and Handcock, 2006). The
default is FALSE, which means the scale parameter is not fixed and thus the
model is a CEF model.

Details

This is the version given in Snijders et al. (2006). The gwdegree and altkstar produce mathemat-
ically equivalent models, as long as they are used together with the edges (or kstar(1)) term, yet
the interpretation of the gwdegree parameters is slightly more straightforward than the interpreta-
tion of the altkstar parameters. For this reason, we recommend the use of the gwdegree instead
of altkstar. See Section 3 and especially equation (13) of Hunter (2007) for details.

Note

This term can only be used with undirected networks.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, curved, undirected, binary

anova.ergm 11

anova.ergm ANOVA for ERGM Fits

Description

Compute an analysis of variance table for one or more ERGM fits.

Usage

S3 method for class 'ergm'
anova(object, ..., eval.loglik = FALSE)

S3 method for class 'ergmlist'
anova(object, ..., eval.loglik = FALSE)

Arguments

object, ... objects of ergm, usually, a result of a call to ergm().

eval.loglik a logical specifying whether the log-likelihood will be evaluated if missing.

Details

Specifying a single object gives a sequential analysis of variance table for that fit. That is, the
reductions in the residual sum of squares as each term of the formula is added in turn are given in
the rows of a table, plus the residual sum of squares.

The table will contain F statistics (and P values) comparing the mean square for the row to the
residual mean square.

If more than one object is specified, the table has a row for the residual degrees of freedom and sum
of squares for each model. For all but the first model, the change in degrees of freedom and sum of
squares is also given. (This only make statistical sense if the models are nested.) It is conventional
to list the models from smallest to largest, but this is up to the user.

If any of the objects do not have estimated log-likelihoods, produces an error, unless eval.loglik=TRUE.

Value

An object of class "anova" inheriting from class "data.frame".

Warning

The comparison between two or more models will only be valid if they are fitted to the same dataset.
This may be a problem if there are missing values and ’s default of na.action = na.omit is used,
and anova.ergmlist() will detect this with an error.

See Also

The model fitting function ergm(), anova(), logLik.ergm() for adding the log-likelihood to an
existing ergm object.

12 approx.hotelling.diff.test

Examples

data(molecule)
molecule %v% "atomic type" <- c(1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3)
fit0 <- ergm(molecule ~ edges)
anova(fit0)
fit1 <- ergm(molecule ~ edges + nodefactor("atomic type"))
anova(fit1)

fit2 <- ergm(molecule ~ edges + nodefactor("atomic type") + gwesp(0.5,
fixed=TRUE), eval.loglik=TRUE) # Note the eval.loglik argument.

anova(fit0, fit1)
anova(fit0, fit1, fit2)

approx.hotelling.diff.test

Approximate Hotelling T^2-Test for One or Two Population Means

Description

A multivariate hypothesis test for a single population mean or a difference between them. This
version attempts to adjust for multivariate autocorrelation in the samples.

Usage

approx.hotelling.diff.test(
x,
y = NULL,
mu0 = 0,
assume.indep = FALSE,
var.equal = FALSE,
...

)

Arguments

x a numeric matrix of data values with cases in rows and variables in columns.

y an optinal matrix of data values with cases in rows and variables in columns for
a 2-sample test.

mu0 an optional numeric vector: for a 1-sample test, the poulation mean under the
null hypothesis; and for a 2-sample test, the difference between population
means under the null hypothesis; defaults to a vector of 0s.

assume.indep if TRUE, performs an ordinary Hotelling’s test without attempting to account for
autocorrelation.

var.equal for a 2-sample test, perform the pooled test: assume population variance-covariance
matrices of the two variables are equal.

as.network.numeric 13

... additional arguments, passed on to spectrum0.mvar(), etc.; in particular, order.max=
can be used to limit the order of the AR model used to estimate the effective
sample size.

Value

An object of class htest with the following information:

statistic The T 2 statistic.

parameter Degrees of freedom.

p.value P-value.

method Method specifics.

null.value Null hypothesis mean or mean difference.

alternative Always "two.sided".

estimate Sample difference.

covariance Estimated variance-covariance matrix of the estimate of the difference.

covariance.x Estimated variance-covariance matrix of the estimate of the mean of x.

covariance.y Estimated variance-covariance matrix of the estimate of the mean of y.

It has a print method print.htest().

Note

For mcmc.list input, the variance for this test is estimated with unpooled means. This is not strictly
correct.

References

Hotelling, H. (1947). Multivariate Quality Control. In C. Eisenhart, M. W. Hastay, and W. A.
Wallis, eds. Techniques of Statistical Analysis. New York: McGraw-Hill.

See Also

t.test()

as.network.numeric Create a Simple Random network of a Given Size

Description

as.network.numeric() creates a random Bernoulli network of the given size as an object of class
network.

14 as.network.numeric

Usage

S3 method for class 'numeric'
as.network(
x,
directed = TRUE,
hyper = FALSE,
loops = FALSE,
multiple = FALSE,
bipartite = FALSE,
ignore.eval = TRUE,
names.eval = NULL,
edge.check = FALSE,
density = NULL,
init = NULL,
numedges = NULL,
...

)

Arguments

x count; the number of nodes in the network

directed logical; should edges be interpreted as directed?

hyper logical; are hyperedges allowed? Currently ignored.

loops logical; should loops be allowed? Currently ignored.

multiple logical; are multiplex edges allowed? Currently ignored.

bipartite count; should the network be interpreted as bipartite? If present (i.e., non-
NULL) it is the count of the number of actors in the bipartite network. In this
case, the number of nodes is equal to the number of actors plus the number of
events (with all actors preceding all events). The edges are then interpreted as
nondirected.

ignore.eval logical; ignore edge values? Currently ignored.

names.eval optionally, the name of the attribute in which edge values should be stored. Cur-
rently ignored.

edge.check logical; perform consistency checks on new edges?

density numeric; the probability of a tie for Bernoulli networks. If neither density nor
init is given, it defaults to the number of nodes divided by the number of dyads
(so the expected number of ties is the same as the number of nodes.)

init numeric; the log-odds of a tie for Bernoulli networks. It is only used if density
is not specified.

numedges count; if present, sample the Bernoulli network conditional on this number of
edges (rather than independently with the specified probability).

... additional arguments

asymmetric-ergmTerm 15

Details

The network will not have vertex, edge or network attributes. These can be added with operators
such as %v%, %n%, %e%.

Value

An object of class network

References

Butts, C.T. 2002. “Memory Structures for Relational Data in R: Classes and Interfaces” Working
Paper.

See Also

network

Examples

Draw a random directed network with 25 nodes
g <- network(25)

Draw a random undirected network with density 0.1
g <- network(25, directed=FALSE, density=0.1)

Draw a random bipartite network with 4 actors and 6 events and density 0.1
g <- network(10, bipartite=4, directed=FALSE, density=0.1)

Draw a random directed network with 25 nodes and 50 edges
g <- network(25, numedges=50)

asymmetric-ergmTerm Asymmetric dyads

Description

This term adds one network statistic to the model equal to the number of pairs of actors for which
exactly one of (i→j) or (j→i) exists.

Usage

binary: asymmetric(attr=NULL, diff=FALSE, keep=NULL, levels=NULL)

16 atleast-ergmTerm

Arguments

attr quantitative attribute (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.) If specified, only symmetric pairs that match on the vertex attribute
are counted.

diff Used in the same way as for the nodematch term. (See nodematch (ergmTerm?nodematch)
for details.)

keep deprecated

level Used in the same way as for the nodematch term. (See nodematch (ergmTerm?nodematch)
for details.)

Note

This term can only be used with directed networks.

The argument keep is retained for backwards compatibility and may be removed in a future version.
When both keep and levels are passed, levels overrides keep.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, dyad-independent, triad-related, binary

atleast-ergmTerm Number of dyads with values greater than or equal to a threshold

Description

Adds the number of statistics equal to the length of threshold equaling to the number of dyads
whose values equal or exceed the corresponding element of threshold .

Usage

valued: atleast(threshold=0)

Arguments

threshold vector of numerical values

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, dyad-independent, undirected, valued

atmost-ergmTerm 17

atmost-ergmTerm Number of dyads with values less than or equal to a threshold

Description

Adds the number of statistics equal to the length of threshold equaling to the number of dyads
whose values equal or are exceeded by the corresponding element of threshold .

Usage

valued: atmost(threshold=0)

Arguments

threshold a vector of numerical values

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, dyad-independent, undirected, valued

attrcov-ergmTerm Edge covariate by attribute pairing

Description

This term adds one statistic to the model, equal to the sum of the covariate values for each edge
appearing in the network, where the covariate value for a given edge is determined by its mixing
type on attr. Undirected networks are regarded as having undirected mixing, and it is assumed
that mat is symmetric in that case.

This term can be useful for simulating large networks with many mixing types, where nodemix
would be slow due to the large number of statistics, and edgecov cannot be used because an adja-
cency matrix would be too big.

Usage

binary: attrcov(attr, mat)

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

mat a matrix of covariates with the same dimensions as a mixing matrix for attr

18 B-ergmTerm

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, dyad-independent, undirected, binary

B-ergmTerm Wrap binary terms for use in valued models

Description

Wraps binary ergm terms for use in valued models, with formula specifying which terms are to
be wrapped and form specifying how they are to be used and how the binary network they are
evaluated on is to be constructed.

Usage

valued: B(formula, form)

Arguments

formula a one-sided ergm()-style formula whose RHS contains the binary ergm terms
to be evaluated. Which terms may be used depends on the argument form

form One of three values:

• "sum": see section "Generalizations of binary terms" in ergmTerm help; all
terms in formula must be dyad-independent.

• "nonzero": section "Generalizations of binary terms" in ergmTerm help;
any binary ergm terms may be used in formula .

• a one-sided formula value-dependent network. form must contain one "val-
ued" ergm term, with the following properties:

– dyadic independence;
– dyadwise contribution of either 0 or 1; and
– dyadwise contribution of 0 for a 0-valued dyad.

Formally, this means that it is expressable as

g(y) =
∑
i,j

fi,j(yi,j),

where for all i, j, and y, fi,j(yi,j) is either 0 or 1 and, in particular, fi,j(0) =
0.
Examples of such terms include nonzero , ininterval() , atleast() ,
atmost() , greaterthan() , lessthen() , and equalto() .
Then, the value of the statistic will be the value of the statistics in formula
evaluated on a binary network that is defined to have an edge if and only if
the corresponding dyad of the valued network adds 1 to the valued term in
form .

b1concurrent-ergmTerm 19

Details

For example, B(~nodecov("a"), form="sum") is equivalent to nodecov("a", form="sum") and
similarly with form="nonzero" .

When a valued implementation is available, it should be preferred, as it is likely to be faster.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: operator, valued

b1concurrent-ergmTerm Concurrent node count for the first mode in a bipartite network

Description

This term adds one network statistic to the model, equal to the number of nodes in the first mode
of the network with degree 2 or higher. The first mode of a bipartite network object is sometimes
known as the "actor" mode. This term can only be used with undirected bipartite networks.

Usage

binary: b1concurrent(by=NULL, levels=NULL)

Arguments

by optional argument specifying a vertex attribute (see Specifying Vertex attributes
and Levels (?nodal_attributes) for details). It functions just like the by ar-
gument of the b1degree term. Without the optional argument, this statistic is
equivalent to b1mindegree(2) .

levels TODO (See Specifying Vertex attributes and Levels (?nodal_attributes) for
details.)

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, categorical nodal attribute, undirected, binary

20 b1degrange-ergmTerm

b1cov-ergmTerm Main effect of a covariate for the first mode in a bipartite network

Description

This term adds a single network statistic for each quantitative attribute or matrix column to the
model equaling the total value of attr(i) for all edges (i, j) in the network. This term may only
be used with bipartite networks. For categorical attributes, see b1factor .

Usage

binary: b1cov(attr)

valued: b1cov(attr, form="sum")

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

form character how to aggregate tie values in a valued ERGM

Note

ergm versions 3.9.4 and earlier used different arguments for this term. See ergm-options for how
to invoke the old behaviour.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, dyad-independent, frequently-used, quantitative nodal attribute, undi-
rected, binary, valued

b1degrange-ergmTerm Degree range for the first mode in a bipartite network

Description

This term adds one network statistic to the model for each element of from (or to); the ith such
statistic equals the number of nodes of the first mode ("actors") in the network of degree greater
than or equal to from[i] but strictly less than to[i] , i.e. with edge count in semiopen interval
[from,to) .

This term can only be used with bipartite networks; for directed networks see idegrange and
odegrange . For undirected networks, see degrange , and see b2degrange for degrees of the
second mode ("events").

b1degree-ergmTerm 21

Usage

binary: b1degrange(from, to=`+Inf`, by=NULL, homophily=FALSE, levels=NULL)

Arguments

from, to vectors of distinct integers. If one of the vectors have length 1, it is recycled to
the length of the other. Otherwise, it must have the same length.

by, levels, homophily
the optional argument by specifies a vertex attribute (see Specifying Vertex at-
tributes and Levels (?nodal_attributes) for details). If this is specified and
homophily is TRUE , then degrees are calculated using the subnetwork consist-
ing of only edges whose endpoints have the same value of the by attribute. If
by is specified and homophily is FALSE (the default), then separate degree range
statistics are calculated for nodes having each separate value of the attribute.
levels selects which levels of by‘ to include.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, undirected, binary

b1degree-ergmTerm Degree for the first mode in a bipartite network

Description

This term adds one network statistic to the model for each element in d ; the ith such statistic equals
the number of nodes of degree d[i] in the first mode of a bipartite network, i.e. with exactly d[i]
edges. The first mode of a bipartite network object is sometimes known as the "actor" mode.

Usage

binary: b1degree(d, by=NULL, levels=NULL)

Arguments

d a vector of distinct integers.
by, levels, homophily

the optional argument by specifies a vertex attribute (see Specifying Vertex at-
tributes and Levels (?nodal_attributes) for details). If this is specified and
homophily is TRUE , then degrees are calculated using the subnetwork consist-
ing of only edges whose endpoints have the same value of the by attribute. If
by is specified and homophily is FALSE (the default), then separate degree range
statistics are calculated for nodes having each separate value of the attribute.
levels selects which levels of by‘ to include.

22 b1dsp-ergmTerm

Note

This term can only be used with undirected bipartite networks.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, categorical nodal attribute, frequently-used, undirected, binary

b1degrees-ergmConstraint

Preserve the actor degree for bipartite networks

Description

For bipartite networks, preserve the degree for the first mode of each vertex of the given network,
while allowing the degree for the second mode to vary.

Usage

b1degrees

See Also

ergmConstraint for index of constraints and hints currently visible to the package.

Keywords: bipartite

b1dsp-ergmTerm Dyadwise shared partners for dyads in the first bipartition

Description

This term adds one network statistic to the model for each element in d ; the ith such statistic
equals the number of dyads in the first bipartition with exactly d[i] shared partners. (Those shared
partners, of course, must be members of the second bipartition.) This term can only be used with
bipartite networks.

Usage

binary: b1dsp(d)

Arguments

d a vector of distinct integers.

b1factor-ergmTerm 23

Note

This term takes an additional term option (see options?ergm), cache.sp, controlling whether the
implementation will cache the number of shared partners for each dyad in the network; this is
usually enabled by default.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, undirected, binary

b1factor-ergmTerm Factor attribute effect for the first mode in a bipartite network

Description

This term adds multiple network statistics to the model, one for each of (a subset of) the unique
values of the attr attribute. Each of these statistics gives the number of times a node with that
attribute in the first mode of the network appears in an edge. The first mode of a bipartite network
object is sometimes known as the "actor" mode.

Usage

binary: b1factor(attr, base=1, levels=-1)

valued: b1factor(attr, base=1, levels=-1, form="sum")

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

base deprecated

levels this optional argument controls which levels of the attribute attributes and Levels
(?nodal_attributes) for details.)

form character how to aggregate tie values in a valued ERGM

Note

To include all attribute values is usually not a good idea, because the sum of all such statistics equals
the number of edges and hence a linear dependency would arise in any model also including edges.
The default, levels=-1, is therefore to omit the first (in lexicographic order) attribute level. To
include all levels, pass either levels=TRUE (i.e., keep all levels) or levels=NULL (i.e., do not filter
levels).

The argument base is retained for backwards compatibility and may be removed in a future version.
When both base and levels are passed, levels overrides base.

This term can only be used with undirected bipartite networks.

24 b1nodematch-ergmTerm

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, categorical nodal attribute, dyad-independent, frequently-used, undirected,
binary, valued

b1mindegree-ergmTerm Minimum degree for the first mode in a bipartite network

Description

This term adds one network statistic to the model for each element in d ; the i th such statistic equals
the number of nodes in the first mode of a bipartite network with at least degree d[i] . The first
mode of a bipartite network object is sometimes known as the "actor" mode.

Usage

binary: b1mindegree(d)

Arguments

d a vector of distinct integers.

Note

This term can only be used with undirected bipartite networks.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, undirected, binary

b1nodematch-ergmTerm Nodal attribute-based homophily effect for the first mode in a bipartite
network

Description

This term is introduced in Bomiriya et al (2014). With the default alpha and beta values, this term
will simply be a homophily based two-star statistic. This term adds one statistic to the model unless
diff is set to TRUE , in which case the term adds multiple network statistics to the model, one for
each of (a subset of) the unique values of the attr attribute.

b1nodematch-ergmTerm 25

Usage

binary: b1nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb2attr=NULL,
levels=NULL)

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

diff by default, one statistic will be added to the model. If diff is set to TRUE, one
statistic will be added for each unique value of the attr attribute

keep deprecated

alpha, beta optional discount parameters both of which take values from [0, 1], only one
should be set at one time

byb2attr specifies a second mode categorical attribute. Setting this argument will separate
the orginal statistics based on the values of the set second mode attribute— i.e.
for example, if diff is FALSE , then the sum of all the statistics for each level
of this second-mode attribute will be equal to the original b1nodematch statistic
where byb2attr set to NULL .

levels select a subset of attr values to include. (See Specifying Vertex attributes and
Levels (?nodal_attributes) for details.)

Details

If an alpha discount parameter is used, each of these statistics gives the sum of the number of
common second-mode nodes raised to the power alpha for each pair of first-mode nodes with that
attribute. If a beta discount parameter is used, each of these statistics gives half the sum of the
number of two-paths with two first-mode nodes with that attribute as the two ends of the two path
raised to the power beta for each edge in the network.

Note

This term can only be used with undirected bipartite networks.

The argument keep is retained for backwards compatibility and may be removed in a future version.
When both keep and levels are passed, levels overrides keep.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, categorical nodal attribute, dyad-independent, frequently-used, undirected,
binary

26 b1star-ergmTerm

b1sociality-ergmTerm Degree

Description

This term adds one network statistic for each node in the first bipartition, equal to the number of
ties of that node. This term can only be used with bipartite networks. For directed networks, see
sender and receiver. For unipartite networks, see sociality.

Usage

binary: b1sociality(nodes=-1)

valued: b1sociality(nodes=-1, form="sum")

Arguments

nodes By default, nodes=-1 means that the statistic for the first node (in the sec-
ond bipartition) will be omitted, but this argument may be changed to con-
trol which statistics are included. The nodes argument is interpreted using
the new UI for level specification (see Specifying Vertex Attributes and Lev-
els (?nodal_attributes) for details), where both the attribute and the sorted
unique values are the vector of vertex indices (nb1 + 1):n , where nb1 is the
size of the first bipartition and n is the total number of nodes in the network.
Thus nodes=120 will include only the statistic for the 120th node in the second
biparition, while nodes=I(120) will include only the statistic for the 120th node
in the entire network.

form character how to aggregate tie values in a valued ERGM

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, dyad-independent, undirected, binary, valued

b1star-ergmTerm k-stars for the first mode in a bipartite network

Description

This term adds one network statistic to the model for each element in k . The i th such statistic
counts the number of distinct k[i] -stars whose center node is in the first mode of the network.
The first mode of a bipartite network object is sometimes known as the "actor" mode. A k -star is
defined to be a center node N and a set of k different nodes {O1, . . . , Ok} such that the ties {N,Oi}
exist for i = 1, . . . , k. This term can only be used for undirected bipartite networks.

b1starmix-ergmTerm 27

Usage

binary: b1star(k, attr=NULL, levels=NULL)

Arguments

k a vector of distinct integers

attr, levels a vertex attribute specification; if attr is specified, then the count is over the
instances where all nodes involved have the same value of the attribute. levels
specified which values of attr are included in the count. (See Specifying Vertex
attributes and Levels (?nodal_attributes) for details.)

Note

b1star(1) is equal to b2star(1) and to edges .

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, categorical nodal attribute, undirected, binary

b1starmix-ergmTerm Mixing matrix for k-stars centered on the first mode of a bipartite net-
work

Description

This term counts all k-stars in which the b2 nodes (called events in some contexts) are homophilous
in the sense that they all share the same value of attr . However, the b1 node (in some contexts, the
actor) at the center of the k-star does NOT have to have the same value as the b2 nodes; indeed, the
values taken by the b1 nodes may be completely distinct from those of the b2 nodes, which allows
for the use of this term in cases where there are two separate nodal attributes, one for the b1 nodes
and another for the b2 nodes (in this case, however, these two attributes should be combined to form
a single nodal attribute, attr). A different statistic is created for each value of attr seen in a b1
node, even if no k-stars are observed with this value.

Usage

binary: b1starmix(k, attr, base=NULL, diff=TRUE)

Arguments

k only a single value of k is allowed

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

base deprecated

28 b1twostar-ergmTerm

diff whether a different statistic is created for each value seen in a b2 node. When
diff=TRUE, the default, a different statistic is created for each value and thus the
behavior of this term is reminiscent of the nodemix term, from which it takes its
name; when diff=FALSE , all homophilous k-stars are counted together, though
these k-stars are still categorized according to the value of the central b1 node.

Note

The argument base is retained for backwards compatibility and may be removed in a future version.
When both base and levels are passed, levels overrides base.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, categorical nodal attribute, undirected, binary

b1twostar-ergmTerm Two-star census for central nodes centered on the first mode of a bi-
partite network

Description

This term takes two nodal attributes. Assuming that there are n1 values of b1attr among the b1
nodes and n2 values of b2attr among the b2 nodes, then the total number of distinct categories of
two stars according to these two attributes is n1(n2)(n2+1)/2. By default, this model term creates
a distinct statistic counting each of these categories.

Usage

binary: b1twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL)

Arguments

b1attr b1 nodes (actors in some contexts) (see Specifying Vertex attributes and Levels
(?nodal_attributes) for details)

b2attr b2 nodes (events in some contexts). If b2attr is not passed, it is assumed to be
the same as b1attr .

b1levels, b2levels, base, levels2
used to leave some of the categories out (see Specifying Vertex attributes and
Levels (?nodal_attributes) for details)

Note

The argument base is retained for backwards compatibility and may be removed in a future version.
When both base and levels are passed, levels overrides base.

The argument base is retained for backwards compatibility and may be removed in a future version.
When both base and levels2 are passed, levels2 overrides base.

b2concurrent-ergmTerm 29

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, categorical nodal attribute, undirected, binary

b2concurrent-ergmTerm Concurrent node count for the second mode in a bipartite network

Description

This term adds one network statistic to the model, equal to the number of nodes in the second
mode of the network with degree 2 or higher. The second mode of a bipartite network object is
sometimes known as the "event" mode. Without the optional argument, this statistic is equivalent
to b2mindegree(2).

Usage

binary: b2concurrent(by=NULL)

Arguments

by This optional argument specifie a vertex attribute (see Specifying Vertex at-
tributes and Levels (?nodal_attributes) for details); it functions just like the
by argument of the b2degree term.

Note

This term can only be used with undirected bipartite networks.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, frequently-used, undirected, binary

30 b2degrange-ergmTerm

b2cov-ergmTerm Main effect of a covariate for the second mode in a bipartite network

Description

This term adds a single network statistic for each quantitative attribute or matrix column to the
model equaling the total value of attr(j) for all edges (i, j) in the network. This term may only
be used with bipartite networks. For categorical attributes, see b2factor.

Usage

binary: b2cov(attr)

valued: b2cov(attr, form="sum")

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

form character how to aggregate tie values in a valued ERGM

Note

ergm versions 3.9.4 and earlier used different arguments for this term. See ergm-options for how
to invoke the old behaviour.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, dyad-independent, frequently-used, quantitative nodal attribute, undi-
rected, binary, valued

b2degrange-ergmTerm Degree range for the second mode in a bipartite network

Description

This term adds one network statistic to the model for each element of from (or to); the i th such
statistic equals the number of nodes of the second mode ("events") in the network of degree greater
than or equal to from[i] but strictly less than to[i] , i.e. with edge count in semiopen interval
[from,to) .

This term can only be used with bipartite networks; for directed networks see idegrange and
odegrange . For undirected networks, see degrange , and see b1degrange for degrees of the first
mode ("actors").

b2degree-ergmTerm 31

Usage

binary: b2degrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL)

Arguments

from, to vectors of distinct integers. If one of the vectors have length 1, it is recycled to
the length of the other. Otherwise, it must have the same length.

by, levels, homophily
the optional argument by specifies a vertex attribute (see Specifying Vertex at-
tributes and Levels (?nodal_attributes) for details). If this is specified and
homophily is TRUE , then degrees are calculated using the subnetwork consist-
ing of only edges whose endpoints have the same value of the by attribute. If
by is specified and homophily is FALSE (the default), then separate degree range
statistics are calculated for nodes having each separate value of the attribute.
levels selects which levels of by‘ to include.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, undirected, binary

b2degree-ergmTerm Degree for the second mode in a bipartite network

Description

This term adds one network statistic to the model for each element in d ; the i th such statistic equals
the number of nodes of degree d[i] in the second mode of a bipartite network, i.e. with exactly
d[i] edges. The second mode of a bipartite network object is sometimes known as the "event"
mode.

Usage

binary: b2degree(d, by=NULL)

Arguments

d a vector of distinct integers

by this optional term specifies a vertex attribute (see Specifying Vertex attributes
and Levels (?nodal_attributes) for details). If this is specified then each
node’s degree is tabulated only with other nodes having the same value of the
by attribute.

Note

This term can only be used with undirected bipartite networks.

32 b2dsp-ergmTerm

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, categorical nodal attribute, frequently-used, undirected, binary

b2degrees-ergmConstraint

Preserve the receiver degree for bipartite networks

Description

For bipartite networks, preserve the degree for the second mode of each vertex of the given network,
while allowing the degree for the first mode to vary.

Usage

b2degrees

See Also

ergmConstraint for index of constraints and hints currently visible to the package.

Keywords: bipartite

b2dsp-ergmTerm Dyadwise shared partners for dyads in the second bipartition

Description

This term adds one network statistic to the model for each element in d ; the i th such statistic
equals the number of dyads in the second bipartition with exactly d[i] shared partners. (Those
shared partners, of course, must be members of the first bipartition.) This term can only be used
with bipartite networks.

Usage

binary: b2dsp(d)

Arguments

d a vector of distinct integers

Note

This term takes an additional term option (see options?ergm), cache.sp, controlling whether the
implementation will cache the number of shared partners for each dyad in the network; this is
usually enabled by default.

b2factor-ergmTerm 33

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, undirected, binary

b2factor-ergmTerm Factor attribute effect for the second mode in a bipartite network

Description

This term adds multiple network statistics to the model, one for each of (a subset of) the unique
values of the attr attribute. Each of these statistics gives the number of times a node with that
attribute in the second mode of the network appears in an edge. The second mode of a bipartite
network object is sometimes known as the "event" mode.

Usage

binary: b2factor(attr, base=1, levels=-1)

valued: b2factor(attr, base=1, levels=-1, form="sum")

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

base deprecated
levels this optional argument controls which levels of the attribute attributes and Levels

(?nodal_attributes) for details.)
form character how to aggregate tie values in a valued ERGM

Note

To include all attribute values is usually not a good idea, because the sum of all such statistics equals
the number of edges and hence a linear dependency would arise in any model also including edges.
The default, levels=-1, is therefore to omit the first (in lexicographic order) attribute level. To
include all levels, pass either levels=TRUE (i.e., keep all levels) or levels=NULL (i.e., do not filter
levels).

The argument base is retained for backwards compatibility and may be removed in a future version.
When both base and levels are passed, levels overrides base.

This term can only be used with undirected bipartite networks.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, categorical nodal attribute, dyad-independent, frequently-used, undirected,
binary, valued

34 b2nodematch-ergmTerm

b2mindegree-ergmTerm Minimum degree for the second mode in a bipartite network

Description

This term adds one network statistic to the model for each element in d ; the i th such statistic
equals the number of nodes in the second mode of a bipartite network with at least degree d[i] .
The second mode of a bipartite network object is sometimes known as the "event" mode.

Usage

binary: b2mindegree(d)

Arguments

d a vector of distinct integers

Note

This term can only be used with undirected bipartite networks.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, undirected, binary

b2nodematch-ergmTerm Nodal attribute-based homophily effect for the second mode in a bi-
partite network

Description

This term is introduced in Bomiriya et al (2014). With the default alpha and beta values, this term
will simply be a homophily based two-star statistic. This term adds one statistic to the model unless
diff is set to TRUE , in which case the term adds multiple network statistics to the model, one for
each of (a subset of) the unique values of the attr attribute.

Usage

binary: b2nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb1attr=NULL,
levels=NULL)

b2sociality-ergmTerm 35

Arguments

diff by default, one statistic will be added to the model. If diff is set to TRUE, one
statistic will be added for each unique value of the attr attribute

keep deprecated

alpha, beta optional discount parameters both of which take values from [0, 1], only one
should be set at one time

byb2attr specifies a second mode categorical attribute. Setting this argument will separate
the orginal statistics based on the values of the set second mode attribute— i.e.
for example, if diff is FALSE , then the sum of all the statistics for each level
of this second-mode attribute will be equal to the original b1nodematch statistic
where byb2attr set to NULL .

levels select a subset of attr values to include. (See Specifying Vertex attributes and
Levels (?nodal_attributes) for details.)

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

Details

If an alpha discount parameter is used, each of these statistics gives the sum of the number of
common first-mode nodes raised to the power alpha for each pair of second-mode nodes with that
attribute. If a beta discount parameter is used, each of these statistics gives half the sum of the
number of two-paths with two second-mode nodes with that attribute as the two ends of the two
path raised to the power beta for each edge in the network.

Note

This term can only be used with undirected bipartite networks.

The argument keep is retained for backwards compatibility and may be removed in a future version.
When both keep and levels are passed, levels overrides keep.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, categorical nodal attribute, dyad-independent, frequently-used, undirected,
binary

b2sociality-ergmTerm Degree

Description

This term adds one network statistic for each node in the second bipartition, equal to the number of
ties of that node. For directed networks, see sender and receiver . For unipartite networks, see
sociality .

36 b2star-ergmTerm

Usage

binary: b2sociality(nodes=-1)

valued: b2sociality(nodes=-1, form="sum")

Arguments

nodes By default, nodes=-1 means that the statistic for the first node (in the sec-
ond bipartition) will be omitted, but this argument may be changed to con-
trol which statistics are included. The nodes argument is interpreted using
the new UI for level specification (see Specifying Vertex Attributes and Lev-
els (?nodal_attributes) for details), where both the attribute and the sorted
unique values are the vector of vertex indices (nb1 + 1):n , where nb1 is the
size of the first bipartition and n is the total number of nodes in the network.
Thus nodes=120 will include only the statistic for the 120th node in the second
biparition, while nodes=I(120) will include only the statistic for the 120th node
in the entire network.

form character how to aggregate tie values in a valued ERGM

Note

This term can only be used with undirected bipartite networks.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, dyad-independent, undirected, binary, valued

b2star-ergmTerm k-stars for the second mode in a bipartite network

Description

This term adds one network statistic to the model for each element in k . The i th such statistic
counts the number of distinct k[i] -stars whose center node is in the second mode of the network.
The second mode of a bipartite network object is sometimes known as the "event" mode. A k -star
is defined to be a center node N and a set of k different nodes {O1, . . . , Ok} such that the ties
{N,Oi} exist for i = 1, . . . , k . This term can only be used for undirected bipartite networks.

Usage

binary: b2star(k, attr=NULL, levels=NULL)

b2starmix-ergmTerm 37

Arguments

k a vector of distinct integers

attr, levels a vertex attribute specification; if attr is specified, then the count is over the
instances where all nodes involved have the same value of the attribute. levels
specified which values of attr are included in the count. (See Specifying Vertex
attributes and Levels (?nodal_attributes) for details.)

Note

b2star(1) is equal to b1star(1) and to edges .

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, categorical nodal attribute, undirected, binary

b2starmix-ergmTerm Mixing matrix for k-stars centered on the second mode of a bipartite
network

Description

This term is exactly the same as b1starmix except that the roles of b1 and b2 are reversed.

Usage

binary: b2starmix(k, attr, base=NULL, diff=TRUE)

Arguments

k only a single value of k is allowed

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

base deprecated

diff whether a different statistic is created for each value seen in a b1 node. When
diff=TRUE, the default, a different statistic is created for each value and thus the
behavior of this term is reminiscent of the nodemix term, from which it takes its
name; when diff=FALSE , all homophilous k-stars are counted together, though
these k-stars are still categorized according to the value of the central b1 node.

Note

The argument base is retained for backwards compatibility and may be removed in a future version.
When both base and levels are passed, levels overrides base.

38 b2twostar-ergmTerm

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, categorical nodal attribute, undirected, binary

b2twostar-ergmTerm Two-star census for central nodes centered on the second mode of a
bipartite network

Description

This term is exactly the same as b1twostar except that the roles of b1 and b2 are reversed.

Usage

binary: b2twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL)

Arguments

b1attr b1 nodes (actors in some contexts) (see Specifying Vertex attributes and Levels
(?nodal_attributes) for details)

b2attr b2 nodes (events in some contexts). If b1attr is not passed, it is assumed to be
the same as b2attr .

b1levels, b2levels, base, levels2
used to leave some of the categories out (see Specifying Vertex attributes and
Levels (?nodal_attributes) for details)

Note

The argument base is retained for backwards compatibility and may be removed in a future version.
When both base and levels are passed, levels overrides base.

The argument base is retained for backwards compatibility and may be removed in a future version.
When both base and levels2 are passed, levels2 overrides base.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, categorical nodal attribute, undirected, binary

balance-ergmTerm 39

balance-ergmTerm Balanced triads

Description

This term adds one network statistic to the model equal to the number of triads in the network that
are balanced. The balanced triads are those of type 102 or 300 in the categorization of Davis and
Leinhardt (1972). For details on the 16 possible triad types, see ?triad.classify in the {sna}
package. For an undirected network, the balanced triads are those with an odd number of ties (i.e.,
1 and 3).

Usage

binary: balance

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, triad-related, undirected, binary

bd-ergmConstraint Constrain maximum and minimum vertex degree

Description

Condition on the number of inedge or outedges posessed by a node. See Placing Bounds on Degrees
section for more information. (?ergmConstraint)

Usage

bd(attribs, maxout, maxin, minout, minin)

Arguments

attribs a matrix of logicals with dimension (n_nodes, attrcount) for the attributes on
which we are conditioning, where attrcount is the number of distinct attributes
values to condition on.

maxout, maxin, minout, minin
matrices of alter attributes with the same dimension as attribs when used in
conjunction with attribs. Otherwise, vectors of integers specifying the rele-
vant limits. If the vector is of length 1, the limit is applied to all nodes. If an
individual entry is NA, then there is no restriction of that kind is applied. For
undirected networks (bipartite and not) use minout and maxout.

40 blockdiag-ergmConstraint

See Also

ergmConstraint for index of constraints and hints currently visible to the package.

Keywords: directed, undirected

Bernoulli-ergmReference

Bernoulli reference

Description

Specifies each dyad’s baseline distribution to be Bernoulli with probability of the tie being 0.5 .
This is the only reference measure used in binary mode.

Usage

Bernoulli

See Also

ergmReference for index of reference distributions currently visible to the package.

Keywords: binary, discrete, finite, nonnegative

blockdiag-ergmConstraint

Block-diagonal structure constraint

Description

Force a block-diagonal structure (and its bipartite analogue) on the network. Only dyads (i, j) for
which attr(i)==attr(j) can have edges.

Note that the current implementation requires that blocks be contiguous for unipartite graphs, and
for bipartite graphs, they must be contiguous within a partition and must have the same ordering in
both partitions. (They do not, however, require that all blocks be represented in both partitions, but
those that overlap must have the same order.)

If multiple block-diagonal constraints are given, or if attr is a vector with multiple attribute names,
blocks will be constructed on all attributes matching.

Usage

blockdiag(attr)

blocks-ergmConstraint 41

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

See Also

ergmConstraint for index of constraints and hints currently visible to the package.

Keywords: directed, dyad-independent, undirected

blocks-ergmConstraint Constrain blocks of dyads defined by mixing type on a vertex attribute.

Description

Any dyad whose toggle would produce a nonzero change statistic for a nodemix term with the same
arguments will be fixed. Note that the levels2 argument has a different default value for blocks
than it does for nodemix.

Usage

blocks(attr=NULL, levels=NULL, levels2=FALSE, b1levels=NULL, b2levels=NULL)

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

b1levels, b2levels, levels, level2
control what mixing types are fixed. levels2 applies to all networks; levels
applies to unipartite networks; b1levels and b2levels apply to bipartite net-
works (see Specifying Vertex attributes and Levels (?nodal_attributes) for
details)

See Also

ergmConstraint for index of constraints and hints currently visible to the package.

Keywords: directed, dyad-independent, undirected

42 check.ErgmTerm

check.ErgmTerm Ensures an Ergm Term and its Arguments Meet Appropriate Condi-
tions

Description

Helper functions for implementing ergm() terms, to check whether the term can be used with the
specified network. For information on ergm terms, see ergmTerm. ergm.checkargs, ergm.checkbipartite,
and ergm.checkderected are helper functions for an old API and are deprecated. Use check.ErgmTerm.

Usage

check.ErgmTerm(
nw,
arglist,
directed = NULL,
bipartite = NULL,
nonnegative = FALSE,
varnames = NULL,
vartypes = NULL,
defaultvalues = list(),
required = NULL,
dep.inform = rep(FALSE, length(required)),
dep.warn = rep(FALSE, length(required)),
argexpr = NULL

)

Arguments

nw the network that term X is being checked against
arglist the list of arguments for term X
directed logical, whether term X requires a directed network; default=NULL
bipartite whether term X requires a bipartite network (T or F); default=NULL
nonnegative whether term X requires a network with only nonnegative weights; default=FALSE
varnames the vector of names of the possible arguments for term X; default=NULL
vartypes the vector of types of the possible arguments for term X, separated by commas;

an empty string ("") or NA disables the check for that argument, and also see
Details; default=NULL

defaultvalues the list of default values for the possible arguments of term X; default=list()
required the logical vector of whether each possible argument is required; default=NULL
dep.inform, dep.warn

a list of length equal to the number of arguments the term can take; if the corre-
sponding element of the list is not FALSE, a message() or a warning() respec-
tively will be issued if the user tries to pass it; if the element is a character string,
it will be used as a suggestion for replacement.

argexpr optional call typically obtained by calling substitute(arglist).

cohab 43

Details

The check.ErgmTerm function ensures for the InitErgmTerm.X function that the term X:

• is applicable given the ’directed’ and ’bipartite’ attributes of the given network
• is not applied to a directed bipartite network
• has an appropiate number of arguments
• has correct argument types if arguments where provided
• has default values assigned if defaults are available

by halting execution if any of the first 3 criteria are not met.

As a convenience, if an argument is optional and its default is NULL, then NULL is assumed to be an
acceptable argument type as well.

Value

A list of the values for each possible argument of term X; user provided values are used when given,
default values otherwise. The list also has an attr(,"missing") attribute containing a named
logical vector indicating whether a particular argument had been set to its default. If argexpr=
argument is provided, attr(,"exprs") attribute is also returned, containing expressions.

cohab Target statistics and model fit to a hypothetical 50,000-node network
population with 50,000 nodes based on egocent

Description

This dataset consists of three objects, each based on data from King County, Washington, USA
(where Seattle is located) derived from the National Survey of Family Growth (NSFG) (https:
//www.cdc.gov/nchs/nsfg/index.htm). The full dataset cannot be released publicly, so some
aspects of these objects are simulated based on the real data. These objects may be used to illustrate
that network modeling may be performed using data that are collected on egos only, i.e., without
directly observing information about alters in a network except for information reported from egos.
The hypothetical population reepresented by this dataset consists of only a subset of individuals, as
categorized by their age, race / ethnicity / immigration status, and gender and sexual identity.

Usage

data(cohab)

Details

The three objects are

cohab_MixMat Mixing matrix on ’race’. Based on ego reports of the race / ethnicity / immigration
status of their cohabiting partners, this matrix gives counts of ego-alter ties by the race of
each individual for a hypothetical population. These counts are based on the NSFG mixing
matrix. Only five categories of the ’race’ variable are included here: Black, Black immigrant,
Hispanic, Hispanic immigrant, and White.

https://www.cdc.gov/nchs/nsfg/index.htm
https://www.cdc.gov/nchs/nsfg/index.htm

44 coincidence-ergmTerm

cohab_PopWts Data frame of demographic characteristics together with relative counts (weights)
in a hypothetical population. Individuals are classified according to five variables: age in
years, race (same five categories of race / ethnicity / immigration status as above), sex (Male
or Female), sexual identity (Female, Male who has sex with Females, or Male who has sex
with Males or Females), and number of model-predicted persistent partnerships with non-
cohabiting partners (0 or 1, where 1 means any nonzero value; the number is capped at 3), and
number of partners (0 or 1).

cohab_TargetStats Vector of target (expected) statistics for a 15-term ERGM applied to a network
of 50,000 nodes in which a tie represents a cohabitation relationship between two nodes. It
is assumed for the purposes of these statistics that only male-female cohabitation relation-
ships are allowed and that no individual may have such a relationship with more than one
person. That is, each node must have degree zero or one. The ergm formula is: ~ edges +
nodefactor("sex.ident", levels = 3) + nodecov("age") + nodecov("agesq") + nodefactor("race",
levels = -5) + nodefactor("othr.net.deg", levels = -1) + nodematch("race", diff =
TRUE) + absdiff("sqrt.age.adj")

References

Krivitsky, P.N., Hunter, D.R., Morris, M., and Klumb, C. (2021). ergm 4.0: New Features and
Improvements. arXiv

National Center for Health Statistics (NCHS). (2020). 2006-2015 National Survey of Family
Growth Public-Use Data and Documentation. Hyattsville, MD: CDC National Center for Health
Statistics. Retrieved from https://www.cdc.gov/nchs/nsfg/index.htm

See Also

ergm

coincidence-ergmTerm Coincident node count for the second mode in a bipartite (aka two-
mode) network

Description

By default this term adds one network statistic to the model for each pair of nodes of mode two.
It is equal to the number of (first mode) mutual partners of that pair. The first mode of a bipartite
network object is sometimes known as the "actor" mode and the seconds as the "event" mode. So
this is the number of actors going to both events in the pair. This term can only be used with
undirected bipartite networks.

Usage

binary: coincidence(levels=NULL,active=0)

https://www.cdc.gov/nchs/nsfg/index.htm

concurrent-ergmTerm 45

Arguments

levels specifies which pairs of nodes in mode two to include. (See Specifying Vertex
attributes and Levels (?nodal_attributes) for details.)

active selects pairs for which the observed count is at least active . Ignored if levels
is specified. (Thus, indices passed as levels should correspond to indices when
levels = NULL and active = 0.)

Note

ergm versions 3.9.4 and earlier used different arguments for this term. See ergm-options for how
to invoke the old behaviour.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, undirected, binary

concurrent-ergmTerm Concurrent node count

Description

This term adds one network statistic to the model, equal to the number of nodes in the network with
degree 2 or higher. This term can only be used with undirected networks.

Usage

binary: concurrent(by=NULL, levels=NULL)

Arguments

by this optional argument specifies a vertex attribute (see Specifying Vertex at-
tributes and Levels (?nodal_attributes) for details.) It functions just like the
by argument of the degree term.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, undirected, binary

46 control.ergm

concurrentties-ergmTerm

Concurrent tie count

Description

This term adds one network statistic to the model, equal to the number of ties incident on each actor
beyond the first. This term can only be used with undirected networks.

Usage

binary: concurrentties(by=NULL, levels=NULL)

Arguments

by a vertex attribute (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.); it functions just like the by argument of the degree term

levels TODO (See Specifying Vertex attributes and Levels (?nodal_attributes) for
details.)

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, undirected, binary

control.ergm Auxiliary function for fine-tuning ERGM fitting.

Description

This function is only used within a call to the ergm() function. See the Usage section in ergm()
for details. Also see the Details section about some of the interactions between its arguments.

Usage

control.ergm(
drop = TRUE,
init = NULL,
init.method = NULL,
main.method = c("MCMLE", "Stochastic-Approximation"),
force.main = FALSE,
main.hessian = TRUE,
checkpoint = NULL,
resume = NULL,

control.ergm 47

MPLE.samplesize = .Machine$integer.max,
init.MPLE.samplesize = function(d, e) max(sqrt(d), e, 40) * 8,
MPLE.type = c("glm", "penalized", "logitreg"),
MPLE.maxit = 10000,
MPLE.nonvar = c("warning", "message", "error"),
MPLE.nonident = c("warning", "message", "error"),
MPLE.nonident.tol = 1e-10,
MPLE.covariance.samplesize = 500,
MPLE.covariance.method = "invHess",
MPLE.covariance.sim.burnin = 1024,
MPLE.covariance.sim.interval = 1024,
MPLE.check = TRUE,
MPLE.constraints.ignore = FALSE,
MCMC.prop = trim_env(~sparse + .triadic),
MCMC.prop.weights = "default",
MCMC.prop.args = list(),
MCMC.interval = NULL,
MCMC.burnin = EVL(MCMC.interval * 16),
MCMC.samplesize = NULL,
MCMC.effectiveSize = NULL,
MCMC.effectiveSize.damp = 10,
MCMC.effectiveSize.maxruns = 16,
MCMC.effectiveSize.burnin.pval = 0.2,
MCMC.effectiveSize.burnin.min = 0.05,
MCMC.effectiveSize.burnin.max = 0.5,
MCMC.effectiveSize.burnin.nmin = 16,
MCMC.effectiveSize.burnin.nmax = 128,
MCMC.effectiveSize.burnin.PC = FALSE,
MCMC.effectiveSize.burnin.scl = 32,
MCMC.effectiveSize.order.max = NULL,
MCMC.return.stats = 2^12,
MCMC.runtime.traceplot = FALSE,
MCMC.maxedges = Inf,
MCMC.addto.se = TRUE,
MCMC.packagenames = c(),
SAN.maxit = 4,
SAN.nsteps.times = 8,
SAN = control.san(term.options = term.options, SAN.maxit = SAN.maxit, SAN.prop =
MCMC.prop, SAN.prop.weights = MCMC.prop.weights, SAN.prop.args = MCMC.prop.args,
SAN.nsteps = EVL(MCMC.burnin, 16384) * SAN.nsteps.times, SAN.samplesize =
EVL(MCMC.samplesize, 1024), SAN.packagenames = MCMC.packagenames, parallel =
parallel, parallel.type = parallel.type, parallel.version.check =
parallel.version.check),

MCMLE.termination = c("confidence", "Hummel", "Hotelling", "precision", "none"),
MCMLE.maxit = 60,
MCMLE.conv.min.pval = 0.5,
MCMLE.confidence = 0.99,
MCMLE.confidence.boost = 2,

48 control.ergm

MCMLE.confidence.boost.threshold = 1,
MCMLE.confidence.boost.lag = 4,
MCMLE.NR.maxit = 100,
MCMLE.NR.reltol = sqrt(.Machine$double.eps),
obs.MCMC.mul = 1/4,
obs.MCMC.samplesize.mul = sqrt(obs.MCMC.mul),
obs.MCMC.samplesize = EVL(round(MCMC.samplesize * obs.MCMC.samplesize.mul)),
obs.MCMC.effectiveSize = NVL3(MCMC.effectiveSize, . * obs.MCMC.mul),
obs.MCMC.interval.mul = sqrt(obs.MCMC.mul),
obs.MCMC.interval = EVL(round(MCMC.interval * obs.MCMC.interval.mul)),
obs.MCMC.burnin.mul = sqrt(obs.MCMC.mul),
obs.MCMC.burnin = EVL(round(MCMC.burnin * obs.MCMC.burnin.mul)),
obs.MCMC.prop = MCMC.prop,
obs.MCMC.prop.weights = MCMC.prop.weights,
obs.MCMC.prop.args = MCMC.prop.args,
obs.MCMC.impute.min_informative = function(nw) network.size(nw)/4,
obs.MCMC.impute.default_density = function(nw) 2/network.size(nw),
MCMLE.min.depfac = 2,
MCMLE.sampsize.boost.pow = 0.5,
MCMLE.MCMC.precision = if (startsWith("confidence", MCMLE.termination[1])) 0.1 else

0.005,
MCMLE.MCMC.max.ESS.frac = 0.1,
MCMLE.metric = c("lognormal", "logtaylor", "Median.Likelihood", "EF.Likelihood",

"naive"),
MCMLE.method = c("BFGS", "Nelder-Mead"),
MCMLE.dampening = FALSE,
MCMLE.dampening.min.ess = 20,
MCMLE.dampening.level = 0.1,
MCMLE.steplength.margin = 0.05,
MCMLE.steplength = NVL2(MCMLE.steplength.margin, 1, 0.5),
MCMLE.steplength.parallel = c("observational", "never"),
MCMLE.sequential = TRUE,
MCMLE.density.guard.min = 10000,
MCMLE.density.guard = exp(3),
MCMLE.effectiveSize = 64,
obs.MCMLE.effectiveSize = NULL,
MCMLE.interval = 1024,
MCMLE.burnin = MCMLE.interval * 16,
MCMLE.samplesize.per_theta = 32,
MCMLE.samplesize.min = 256,
MCMLE.samplesize = NULL,
obs.MCMLE.samplesize.per_theta = round(MCMLE.samplesize.per_theta *
obs.MCMC.samplesize.mul),

obs.MCMLE.samplesize.min = 256,
obs.MCMLE.samplesize = NULL,
obs.MCMLE.interval = round(MCMLE.interval * obs.MCMC.interval.mul),
obs.MCMLE.burnin = round(MCMLE.burnin * obs.MCMC.burnin.mul),
MCMLE.steplength.solver = c("glpk", "lpsolve"),

control.ergm 49

MCMLE.last.boost = 4,
MCMLE.steplength.esteq = TRUE,
MCMLE.steplength.miss.sample = function(x1) c(max(ncol(rbind(x1)) * 2, 30), 10),
MCMLE.steplength.min = 1e-04,
MCMLE.effectiveSize.interval_drop = 2,
MCMLE.save_intermediates = NULL,
MCMLE.nonvar = c("message", "warning", "error"),
MCMLE.nonident = c("warning", "message", "error"),
MCMLE.nonident.tol = 1e-10,
SA.phase1_n = function(q, ...) max(200, 7 + 3 * q),
SA.initial_gain = 0.1,
SA.nsubphases = 4,
SA.min_iterations = function(q, ...) (7 + q),
SA.max_iterations = function(q, ...) (207 + q),
SA.phase3_n = 1000,
SA.interval = 1024,
SA.burnin = SA.interval * 16,
SA.samplesize = 1024,
CD.samplesize.per_theta = 128,
obs.CD.samplesize.per_theta = 128,
CD.nsteps = 8,
CD.multiplicity = 1,
CD.nsteps.obs = 128,
CD.multiplicity.obs = 1,
CD.maxit = 60,
CD.conv.min.pval = 0.5,
CD.NR.maxit = 100,
CD.NR.reltol = sqrt(.Machine$double.eps),
CD.metric = c("naive", "lognormal", "logtaylor", "Median.Likelihood", "EF.Likelihood"),
CD.method = c("BFGS", "Nelder-Mead"),
CD.dampening = FALSE,
CD.dampening.min.ess = 20,
CD.dampening.level = 0.1,
CD.steplength.margin = 0.5,
CD.steplength = 1,
CD.adaptive.epsilon = 0.01,
CD.steplength.esteq = TRUE,
CD.steplength.miss.sample = function(x1) ceiling(sqrt(ncol(rbind(x1)))),
CD.steplength.min = 1e-04,
CD.steplength.parallel = c("observational", "always", "never"),
CD.steplength.solver = c("glpk", "lpsolve"),
loglik = control.logLik.ergm(),
term.options = NULL,
seed = NULL,
parallel = 0,
parallel.type = NULL,
parallel.version.check = TRUE,
parallel.inherit.MT = FALSE,

50 control.ergm

...
)

Arguments

drop Logical: If TRUE, terms whose observed statistic values are at the extremes of
their possible ranges are dropped from the fit and their corresponding parameter
estimates are set to plus or minus infinity, as appropriate. This is done because
maximum likelihood estimates cannot exist when the vector of observed statistic
lies on the boundary of the convex hull of possible statistic values.

init numeric or NA vector equal in length to the number of parameters in the model
or NULL (the default); the initial values for the estimation and coefficient offset
terms. If NULL is passed, all of the initial values are computed using the method
specified by control$init.method. If a numeric vector is given, the elements
of the vector are interpreted as follows:

• Elements corresponding to terms enclosed in offset() are used as the fixed
offset coefficients. Note that offset coefficients alone can be more conve-
niently specified using ergm() argument offset.coef. If both offset.coef
and init arguments are given, values in offset.coef will take precedence.

• Elements that do not correspond to offset terms and are not NA are used as
starting values in the estimation.

• Initial values for the elements that are NA are fit using the method specified
by control$init.method.

Passing control.ergm(init=coef(prev.fit)) can be used to “resume” an
uncoverged ergm() run, though checkpoint and ‘resume‘ would be better un-
der most circumstances.

init.method A chatacter vector or NULL. The default method depends on the reference mea-
sure used. For the binary ("Bernoulli") ERGMs, with dyad-independent con-
straints, it’s maximum pseudo-likelihood estimation (MPLE). Other valid values
include "zeros" for a 0 vector of appropriate length and "CD" for contrastive di-
vergence. If passed explicitly, this setting overrides the reference’s limitations.
Valid initial methods for a given reference are set by the InitErgmReference.*
function.

main.method One of "MCMLE" (default) or "Stochastic-Approximation". Chooses the esti-
mation method used to find the MLE. MCMLE attempts to maximize an approx-
imation to the log-likelihood function. Stochastic-Approximation are both
stochastic approximation algorithms that try to solve the method of moments
equation that yields the MLE in the case of an exponential family model. The di-
rect use of the likelihood function has many theoretical advantages over stochas-
tic approximation, but the choice will depend on the model and data being fit.
See Handcock (2000) and Hunter and Handcock (2006) for details.

force.main Logical: If TRUE, then force MCMC-based estimation method, even if the exact
MLE can be computed via maximum pseudolikelihood estimation.

main.hessian Logical: If TRUE, then an approximate Hessian matrix is used in the MCMC-
based estimation method.

control.ergm 51

checkpoint At the start of every iteration, save the state of the optimizer in a way that will
allow it to be resumed. The name is passed through sprintf() with iteration
number as the second argument. (For example, checkpoint="step_%03d.RData"
will save to step_001.RData, step_002.RData, etc.)

resume If given a file name of an RData file produced by checkpoint, the optimizer will
attempt to resume after restoring the state. Control parameters from the saved
state will be reused, except for those whose value passed via control.ergm()
had change from the saved run. Note that if the network, the model, or some
critical settings differ between runs, the results may be undefined.

MPLE.samplesize, init.MPLE.samplesize
These parameters control the maximum number of dyads (potential ties) that
will be used by the MPLE to construct the predictor matrix for its logistic re-
gression. In general, the algorithm visits dyads in a systematic sample that, if
it does not hit one of these limits, will visit every informative dyad. If a limit
is exceeded, case-control approximation to the likelihood, comprising all edges
and those non-edges that have been visited by the algorithm before the limit was
exceeded will be used.
MPLE.samplesize limits the number of dyads visited, unless the MPLE is being
computed for the purpose of being the initial value for MCMC-based estimation,
in which case init.MPLE.samplesize is used instead, All of these can be spec-
ified either as numbers or as function(d,e) taking the number of informative
dyads and informative edges. Specifying or returning a larger number than the
number of informative dyads is safe.

MPLE.type One of "glm", "penalized", or "logitreg". Chooses method of calculating
MPLE. "glm" is the usual formal logistic regression called via glm(), whereas
"penalized" uses the bias-reduced method of Firth (1993) as originally imple-
mented by Meinhard Ploner, Daniela Dunkler, Harry Southworth, and Georg
Heinze in the "logistf" package. "logitreg" is an "in-house" implementation
that is slower and probably less stable but supports nonlinear logistic regression.
It is invoked automatically when the model has curved terms.

MPLE.maxit Maximum number of iterations for "logitreg" implementation of MPLE.
MPLE.nonident, MPLE.nonident.tol, MPLE.nonvar, MCMLE.nonident,
MCMLE.nonident.tol, MCMLE.nonvar

A rudimentary nonidentifiability/multicollinearity diagnostic. If MPLE.nonident.tol
> 0, test the MPLE covariate matrix or the CD statistics matrix has linearly de-
pendent columns via QR decomposition with tolerance MPLE.nonident.tol.
This is often (not always) indicative of a non-identifiable (multicollinear) model.
If nonidentifiable, depending on MPLE.nonident issue a warning, an error, or a
message specifying the potentially redundant statistics. Before the diagnostic
is performed, covariates that do not vary (i.e., all-zero columns) are dropped,
with their handling controlled by MPLE.nonvar. The corresponding MCMLE.*
arguments provide a similar diagnostic for the unconstrained MCMC sample’s
estimating functions.

MPLE.covariance.method, MPLE.covariance.samplesize,
MPLE.covariance.sim.burnin, MPLE.covariance.sim.interval

Controls for estimating the MPLE covariance matrix. MPLE.covariance method
determines the method, with invHess (the default) returning the covariance es-

52 control.ergm

timate obtained from the glm(). Godambe estimates the covariance matrix us-
ing the Godambe-matrix (Schmid and Hunter 2023). This method is recom-
mended for dyad-dependent models. Alternatively, bootstrap estimates stan-
dard deviations using a parametric bootstrapping approach (see Schmid and
Desmarais 2017). The other parameters control, respectively, the number of
networks to simulate, the MCMC burn-in, and the MCMC interval for Godambe
and bootstrap methods.

MPLE.check If TRUE (the default), perform the MPLE existence check described by Schmid
and Hunter (2023).

MPLE.constraints.ignore

If TRUE, MPLE will ignore all dyad-independent constraints except for those due
to attributes missingness. This can be used to avert evaluating and storing the
rlebdms for very large networks except where absolutely necessary. Note that
this can be very dangerous unless you know what you are doing.

MCMC.prop Specifies the proposal (directly) and/or a series of "hints" about the structure
of the model being sampled. The specification is in the form of a one-sided
formula with hints separated by + operations. If the LHS exists and is a string,
the proposal to be used is selected directly.
A common and default "hint" is ~sparse, indicating that the network is sparse
and that the sample should put roughly equal weight on selecting a dyad with or
without a tie as a candidate for toggling.

MCMC.prop.weights

Specifies the proposal distribution used in the MCMC Metropolis-Hastings al-
gorithm. Possible choices depending on selected reference and constraints
arguments of the ergm() function, but often include "TNT" and "random", and
the "default" is to use the one with the highest priority available.

MCMC.prop.args An alternative, direct way of specifying additional arguments to proposal.
MCMC.interval Number of proposals between sampled statistics. Increasing interval will re-

duces the autocorrelation in the sample, and may increase the precision in esti-
mates by reducing MCMC error, at the expense of time. Set the interval higher
for larger networks.

MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to
a fairly large number.

MCMC.samplesize

Number of network statistics, randomly drawn from a given distribution on the
set of all networks, returned by the Metropolis-Hastings algorithm. Increasing
sample size may increase the precision in the estimates by reducing MCMC
error, at the expense of time. Set it higher for larger networks, or when using
parallel functionality.

MCMC.effectiveSize, MCMC.effectiveSize.damp,
MCMC.effectiveSize.maxruns, MCMC.effectiveSize.burnin.pval,
MCMC.effectiveSize.burnin.min, MCMC.effectiveSize.burnin.max,
MCMC.effectiveSize.burnin.nmin, MCMC.effectiveSize.burnin.nmax,
MCMC.effectiveSize.burnin.PC, MCMC.effectiveSize.burnin.scl,
MCMC.effectiveSize.order.max

Set MCMC.effectiveSize to a non-NULL value to adaptively determine the
burn-in and the MCMC length needed to get the specified effective size; 50 is

control.ergm 53

a reasonable value. In the adaptive MCMC mode, MCMC is run forward repeat-
edly (MCMC.samplesize*MCMC.interval steps, up to MCMC.effectiveSize.maxruns
times) until the target effective sample size is reached or exceeded.
After each run, the returned statistics are mapped to the estimating function
scale, then an exponential decay model is fit to the scaled statistics to find that
burn-in which would reduce the difference between the initial values of statistics
and their equilibrium values by a factor of MCMC.effectiveSize.burnin.scl
of what it initially was, bounded by MCMC.effectiveSize.min and MCMC.effectiveSize.max
as proportions of sample size. If the best-fitting decay exceeds MCMC.effectiveSize.max,
the exponential model is considered to be unsuitable and MCMC.effectiveSize.min
is used.
A Geweke diagnostic is then run, after thinning the sample to MCMC.effectiveSize.burnin.nmax.
If this Geweke diagnostic produces a p-value higher than MCMC.effectiveSize.burnin.pval,
it is accepted.
If MCMC.effectiveSize.burnin.PC>0, instead of using the full sample for
burn-in estimation, at most this many principal components are used instead.
The effective size of the post-burn-in sample is computed via Vats et al. (2019),
and compared to the target effective size. If it is not matched, the MCMC run is
resumed, with the additional draws needed linearly extrapolated but weighted in
favor of the baseline MCMC.samplesize by the weighting factor MCMC.effectiveSize.damp
(higher = less damping). Lastly, if after an MCMC run, the number of samples
equals or exceeds 2*MCMC.samplesize, the chain will be thinned by 2 until it
falls below that, while doubling MCMC.interval. MCMC.effectiveSize.order.max
can be used to set the order of the AR model used to estimate the effective sam-
ple size and the variance for the Geweke diagnostic.
Lastly, if MCMC.effectiveSize is a matrix, say, W , it will be treated as a target
precision (inverse-variance) matrix. If V is the sample covariance matrix, the
target effective size neff will be set such that V/neff is close to W in magnitude,
specifically that tr((V/neff)W)/p ≈ 1.

MCMC.return.stats

Numeric: If positive, include an mcmc.list (two, if observational process was
involved) of MCMC network statistics from the last iteration of network of the
estimation. They will be thinned to have length of at most MCMC.return.stats.
They are used for MCMC diagnostics.

MCMC.runtime.traceplot

Logical: If TRUE, plot traceplots of the MCMC sample after every MCMC MLE
iteration.

MCMC.maxedges The maximum number of edges that may occur during the MCMC sampling. If
this number is exceeded at any time, sampling is stopped immediately.

MCMC.addto.se Whether to add the standard errors induced by the MCMC algorithm to the
estimates’ standard errors.

MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

SAN.maxit When target.stats argument is passed to ergm(), the maximum number of
attempts to use san() to obtain a network with statistics close to those specified.

54 control.ergm

SAN.nsteps.times

Multiplier for SAN.nsteps relative to MCMC.burnin. This lets one control the
amount of SAN burn-in (arguably, the most important of SAN parameters) with-
out overriding the other SAN defaults.

SAN Control arguments to san(). See control.san() for details.
MCMLE.termination

The criterion used for terminating MCMLE estimation:

• "Hummel" Terminate when the Hummel step length is 1 for two consecutive
iterations. For the last iteration, the sample size is boosted by a factor of
MCMLE.last.boost. See Hummel et. al. (2012).

Note that this criterion is incompatible with MCMLE.steplength ̸= 1 or MCMLE.steplength.margin
= NULL.

• "Hotelling" After every MCMC sample, an autocorrelation-adjusted Hotelling’s
T^2 test for equality of MCMC-simulated network statistics to observed is
conducted, and if its P-value exceeds MCMLE.conv.min.pval, the estima-
tion is considered to have converged and finishes. This was the default
option in ergm version 3.1.

• "precision" Terminate when the estimated loss in estimating precision
due to using MCMC standard errors is below the precision bound specified
by MCMLE.MCMC.precision, and the Hummel step length is 1 for two con-
secutive iterations. See MCMLE.MCMC.precision for details. This feature is
in experimental status until we verify the coverage of the standard errors.

Note that this criterion is incompatible with MCMLE.steplength ̸= 1 or MCMLE.steplength.margin =
NULL.

• "confidence": Performs an equivalence test to prove with level of confi-
dence MCMLE.confidence that the true value of the deviation of the simu-
lated mean value parameter from the observed is within an ellipsoid defined
by the inverse-variance-covariance of the sufficient statistics multiplied by
a scaling factor control$MCMLE.MCMC.precision (which has a different
default).

• "none" Stop after MCMLE.maxit iterations.

MCMLE.maxit Maximum number of times the parameter for the MCMC should be updated by
maximizing the MCMC likelihood. At each step the parameter is changed to the
values that maximizes the MCMC likelihood based on the current sample.

MCMLE.conv.min.pval

The P-value used in the Hotelling test for early termination.
MCMLE.confidence

The confidence level for declaring convergence for "confidence" methods.
MCMLE.confidence.boost

The maximum increase factor in sample size (or target effective size, if enabled)
when the "confidence" termination criterion is either not approaching the tol-
erance region or is unable to prove convergence.

MCMLE.confidence.boost.threshold, MCMLE.confidence.boost.lag
Sample size or target effective size will be increaed if the distance from the tol-
erance region fails to decrease more than MCMLE.confidence.boost.threshold
in this many successive iterations.

control.ergm 55

MCMLE.NR.maxit, MCMLE.NR.reltol
The method, maximum number of iterations and relative tolerance to use within
the optim rountine in the MLE optimization. Note that by default, ergm uses
trust, and falls back to optim only when trust fails.

obs.MCMC.prop, obs.MCMC.prop.weights, obs.MCMC.prop.args,
obs.MCMLE.effectiveSize, obs.MCMC.samplesize, obs.MCMC.burnin,
obs.MCMC.interval, obs.MCMC.mul, obs.MCMC.samplesize.mul,
obs.MCMC.burnin.mul, obs.MCMC.interval.mul, obs.MCMC.effectiveSize,
obs.MCMLE.burnin, obs.MCMLE.interval, obs.MCMLE.samplesize,
obs.MCMLE.samplesize.per_theta, obs.MCMLE.samplesize.min

Corresponding MCMC parameters and settings used for the constrained sample
when unobserved data are present in the estimation routine. By default, they are
controlled by the *.mul parameters, as fractions of the corresponding settings
for the unconstrained (standard) MCMC.
These can, in turn, be controlled by obs.MCMC.mul, which can be used to set
the overal multiplier for the number of MCMC steps in the constrained sam-
ple; one half of its effect applies to the burn-in and interval and the other half
to the total sample size. For example, for obs.MCMC.mul=1/4 (the default),
obs.MCMC.samplesize is set to

√
1/4 = 1/2 that of obs.MCMC.samplesize,

and obs.MCMC.burnin and obs.MCMC.interval are set to
√

1/4 = 1/2 of their
respective unconstrained sampling parameters. When MCMC.effectiveSize or
MCMLE.effectiveSize are given, their corresponding obs parameters are set to
them multiplied by obs.MCMC.mul.
Lastly, if MCMLE.effectiveSize is not NULL but obs.MCMLE.effectiveSize
is, the constrained sample’s target effective size is set adaptively to achieve a
similar precision for the estimating functions as that achieved for the uncon-
strained.

obs.MCMC.impute.min_informative, obs.MCMC.impute.default_density
Controls for imputation of missing dyads for initializing MCMC sampling. If
numeric, obs.MCMC.impute.min_informative specifies the minimum number
dyads that need to be non-missing before sample network density is used as the
imputation density. It can also be specified as a function that returns this value.
obs.MCMC.impute.default_density similarly controls the imputation density
when number of non-missing dyads is too low.

MCMLE.min.depfac, MCMLE.sampsize.boost.pow
When using adaptive MCMC effective size, and methods that increase the MCMC
sample size, use MCMLE.sampsize.boost.pow as the power of the boost amount
(relative to the boost of the target effective size), but ensure that sample size is
no less than MCMLE.min.depfac times the target effective size.

MCMLE.MCMC.precision, MCMLE.MCMC.max.ESS.frac
MCMLE.MCMC.precision is a vector of upper bounds on the standard errors in-
duced by the MCMC algorithm, expressed as a percentage of the total standard
error. The MCMLE algorithm will terminate when the MCMC standard errors
are below the precision bound, and the Hummel step length is 1 for two consec-
utive iterations. This is an experimental feature.
If effective sample size is used (see MCMC.effectiveSize), then ergm may in-
crease the target ESS to reduce the MCMC standard error.

56 control.ergm

MCMLE.metric Method to calculate the loglikelihood approximation. See Hummel et al (2010)
for an explanation of "lognormal" and "naive".

MCMLE.method Deprecated. By default, ergm uses trust, and falls back to optim with Nelder-
Mead method when trust fails.

MCMLE.dampening

(logical) Should likelihood dampening be used?
MCMLE.dampening.min.ess

The effective sample size below which dampening is used.
MCMLE.dampening.level

The proportional distance from boundary of the convex hull move.
MCMLE.steplength.margin

The extra margin required for a Hummel step to count as being inside the convex
hull of the sample. Set this to 0 if the step length gets stuck at the same value
over several iteraions. Set it to NULL to use fixed step length. Note that this
parameter is required to be non-NULL for MCMLE termination using Hummel
or precision criteria.

MCMLE.steplength

Multiplier for step length (on the mean-value parameter scale), which may (for
values less than one) make fitting more stable at the cost of computational effi-
ciency.
If MCMLE.steplength.margin is not NULL, the step length will be set using the
algorithm of Hummel et al. (2010). In that case, it will serve as the maximum
step length considered. However, setting it to anything other than 1 will preclude
using Hummel or precision as termination criteria.

MCMLE.steplength.parallel

Whether parallel multisection search (as opposed to a bisection search) for the
Hummel step length should be used if running in multiple threads. Possible
values (partially matched) are "never", and (default) "observational" (i.e.,
when missing data MLE is used).

MCMLE.sequential

Logical: If TRUE, the next iteration of the fit uses the last network sampled as
the starting network. If FALSE, always use the initially passed network. The
results should be similar (stochastically), but the TRUE option may help if the
target.stats in the ergm() function are far from the initial network.

MCMLE.density.guard.min, MCMLE.density.guard
A simple heuristic to stop optimization if it finds itself in an overly dense re-
gion, which usually indicates ERGM degeneracy: if the sampler encounters a
network configuration that has more than MCMLE.density.guard.min edges
and whose number of edges is exceeds the observed network by more than
MCMLE.density.guard, the optimization process will be stopped with an error.

MCMLE.effectiveSize, MCMLE.effectiveSize.interval_drop,
MCMLE.burnin, MCMLE.interval, MCMLE.samplesize,
MCMLE.samplesize.per_theta, MCMLE.samplesize.min

Sets the corresponding MCMC.* parameters when main.method="MCMLE" (the
default). Used because defaults may be different for different methods. MCMLE.samplesize.per_theta
controls the MCMC sample size (not target effective size) as a function of the

control.ergm 57

number of (curved) parameters in the model, and MCMLE.samplesize.min sets
the minimum sample size regardless of their number.

MCMLE.steplength.solver

The linear program solver to use for MCMLE step length calculation. Can be
either "glpk" to use Rglpk or "lpsolve" to use lpSolveAPI. Rglpk can be
orders of magnitude faster, particularly for models with many parameters and
with large sample sizes, so it is used where available; but it requires an exter-
nal library to install under some operating systems, so fallback to lpSolveAPI
provided.

MCMLE.last.boost

For the Hummel termination criterion, increase the MCMC sample size of the
last iteration by this factor.

MCMLE.steplength.esteq

For curved ERGMs, should the estimating function values be used to compute
the Hummel step length? This allows the Hummel stepping algorithm converge
when some sufficient statistics are at 0.

MCMLE.steplength.miss.sample

In fitting the missing data MLE, the rules for step length become more compli-
cated. In short, it is necessary for all points in the constrained sample to be in
the convex hull of the unconstrained (though they may be on the border); and
it is necessary for their centroid to be in its interior. This requires checking a
large number of points against whether they are in the convex hull, so to speed
up the procedure, a sample is taken of the points most likely to be outside it.
This parameter specifies the sample size or a function of the unconstrained sam-
ple matrix to determine the sample size. If the parameter or the return value of
the function has a length of 2, the first element is used as the sample size, and
the second element is used in an early-termination heuristic, only continuing the
tests until this many test points in a row did not yield a change in the step length.

MCMLE.steplength.min

Stops MCMLE estimation when the step length gets stuck below this minimum
value.

MCMLE.save_intermediates

Every iteration, after MCMC sampling, save the MCMC sample and some mis-
cellaneous information to a file with this name. This is mainly useful for diag-
nostics and debugging. The name is passed through sprintf() with iteration
number as the second argument. (For example, MCMLE.save_intermediates="step_%03d.RData"
will save to step_001.RData, step_002.RData, etc.)

SA.phase1_n A constant or a function of number of free parameters q, number of free canoni-
cal statistic p, and network size n, giving the number of MCMC samples to draw
in Phase 1 of the stochastic approximation algorithm. Defaults to max(200, 7+
3p). See Snijders (2002) for details.

SA.initial_gain

Initial gain to Phase 2 of the stochastic approximation algorithm. Defaults to
0.1. See Snijders (2002) for details.

SA.nsubphases Number of sub-phases in Phase 2 of the stochastic approximation algorithm.
Defaults to MCMLE.maxit. See Snijders (2002) for details.

https://CRAN.R-project.org/package=Rglpk
https://CRAN.R-project.org/package=lpSolveAPI
https://CRAN.R-project.org/package=Rglpk
https://CRAN.R-project.org/package=lpSolveAPI

58 control.ergm

SA.min_iterations, SA.max_iterations
A constant or a function of number of free parameters q, number of free canon-
ical statistic p, and network size n, giving the baseline numbers of iterations
within each subphase of Phase 2 of the stochastic approximation algorithm. De-
fault to 7 + p and 207 + p, respectively. See Snijders (2002) for details.

SA.phase3_n Sample size for the MCMC sample in Phase 3 of the stochastic approximation
algorithm. See Snijders (2002) for details.

SA.burnin, SA.interval, SA.samplesize
Sets the corresponding MCMC.* parameters when main.method="Stochastic-Approximation".

CD.samplesize.per_theta, obs.CD.samplesize.per_theta, CD.maxit,
CD.conv.min.pval, CD.NR.maxit, CD.NR.reltol, CD.metric, CD.method,
CD.dampening, CD.dampening.min.ess, CD.dampening.level,
CD.steplength.margin, CD.steplength, CD.steplength.parallel,
CD.adaptive.epsilon, CD.steplength.esteq, CD.steplength.miss.sample,
CD.steplength.min, CD.steplength.solver

Miscellaneous tuning parameters of the CD sampler and optimizer. These have
the same meaning as their MCMLE.* and MCMC.* counterparts.
Note that only the Hotelling’s stopping criterion is implemented for CD.

CD.nsteps, CD.multiplicity
Main settings for contrastive divergence to obtain initial values for the estima-
tion: respectively, the number of Metropolis–Hastings steps to take before re-
verting to the starting value and the number of tentative proposals per step. Com-
putational experiments indicate that increasing CD.multiplicity improves the
estimate faster than increasing CD.nsteps — up to a point — but it also samples
from the wrong distribution, in the sense that while as CD.nsteps→∞, the CD
estimate approaches the MLE, this is not the case for CD.multiplicity.
In practice, MPLE, when available, usually outperforms CD for even a very high
CD.nsteps (which is, in turn, not very stable), so CD is useful primarily when
MPLE is not available. This feature is to be considered experimental and in flux.
The default values have been set experimentally, providing a reasonably stable,
if not great, starting values.

CD.nsteps.obs, CD.multiplicity.obs
When there are missing dyads, CD.nsteps and CD.multiplicity must be set
to a relatively high value, as the network passed is not necessarily a good start
for CD. Therefore, these settings are in effect if there are missing dyads in the
observed network, using a higher default number of steps.

loglik See control.ergm.bridge()

term.options A list of additional arguments to be passed to term initializers. See ? term.options.

seed Seed value (integer) for the random number generator. See set.seed().

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See ergm-parallel for details and troubleshooting.

parallel.type API to use for parallel processing. Defaults to using the parallel package with
PSOCK clusters. See ergm-parallel.

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

https://CRAN.R-project.org/package=ergm

control.ergm 59

parallel.inherit.MT

Logical: If TRUE, slave nodes and processes inherit the set.MT_terms() set-
ting.

... A dummy argument to catch deprecated or mistyped control parameters.

Details

Different estimation methods or components of estimation have different efficient tuning param-
eters; and we generally want to use the estimation controls to inform the simulation controls in
control.simulate.ergm(). To accomplish this, control.ergm() uses method-specific controls,
with the method identified by the prefix:

CD Contrastive Divergence estimation (Krivitsky 2017)

MPLE Maximum Pseudo-Likelihood Estimation (Strauss and Ikeda 1990)

MCMLE Monte-Carlo MLE (Hunter and Handcock 2006; Hummel et al. 2012)

SA Stochastic Approximation via Robbins–Monro (Robbins and Monro 1951; Snijders 2002)

SAN Simulated Annealing used when target.stats are specified for ergm()

obs Missing data MLE (Handcock and Gile 2010)

init Affecting how initial parameter guesses are obtained

parallel Affecting parallel processing

MCMC Low-level MCMC simulation controls

Corresponding MCMC controls will usually be overwritten by the method-specific ones. After the
estimation finishes, they will contain the last MCMC parameters used.

Value

A list with arguments as components.

References

Handcock MS, Gile KJ (2010). “Modeling Social Networks from Sampled Data.” Annals of Ap-
plied Statistics, 4(1), 5–25. ISSN 1932-6157, doi:10.1214/08AOAS221.

Hummel RM, Hunter DR, Handcock MS (2012). “Improving Simulation-based Algorithms for
Fitting ERGMs.” Journal of Computational and Graphical Statistics, 21(4), 920–939. doi:10.1080/
10618600.2012.679224.

Hunter DR, Handcock MS (2006). “Inference in Curved Exponential Family Models for Net-
works.” Journal of Computational and Graphical Statistics, 15(3), 565–583. ISSN 1061-8600,
doi:10.1198/106186006X133069.

Krivitsky PN (2017). “Using Contrastive Divergence to Seed Monte Carlo MLE for Exponential-
family Random Graph Models.” Computational Statistics & Data Analysis, 107, 149–161. doi:10.1016/
j.csda.2016.10.015.

Robbins H, Monro S (1951). “A Stochastic Approximation Method.” The Annals of Mathemat-
ical Statistics, 22(3), 400–407. ISSN 00034851.

https://doi.org/10.1214/08-AOAS221
https://doi.org/10.1080/10618600.2012.679224
https://doi.org/10.1080/10618600.2012.679224
https://doi.org/10.1198/106186006X133069
https://doi.org/10.1016/j.csda.2016.10.015
https://doi.org/10.1016/j.csda.2016.10.015

60 control.ergm.bridge

Schmid CS, Desmarais BA (2017). “Exponential random graph models with big networks: Maxi-
mum pseudolikelihood estimation and the parametric bootstrap.” In 2017 IEEE International Con-
ference on Big Data (Big Data), 116–121. doi:10.1109/bigdata.2017.8257919.

Schmid CS, Hunter DR (2023). “Computing Pseudolikelihood Estimators for Exponential-Family
Random Graph Models.” Journal of Data Science, 21(2), 295–309. doi:10.6339/23JDS1094.

Snijders TAB (2002). “Markov chain Monte Carlo Estimation of Exponential Random Graph Mod-
els.” Journal of Social Structure, 3(2).

Strauss D, Ikeda M (1990). “Pseudolikelihood Estimation for Social Networks.” Journal of the
American Statistical Association, 85(409), 204–212. ISSN 0162-1459, doi:10.1080/01621459.1990.10475327.

Vats D, Flegal JM, Jones GL (2019). “Multivariate output analysis for Markov chain Monte Carlo.”
Biometrika, 106(2), 321-337. doi:10.1093/biomet/asz002.

• Firth (1993), Bias Reduction in Maximum Likelihood Estimates. Biometrika, 80: 27-38.

• Kristoffer Sahlin. Estimating convergence of Markov chain Monte Carlo simulations. Mas-
ter’s Thesis. Stockholm University, 2011. https://www2.math.su.se/matstat/reports/
master/2011/rep2/report.pdf

See Also

ergm(). The control.simulate() function performs a similar function for simulate.ergm();
control.gof() performs a similar function for gof().

control.ergm.bridge Auxiliaries for Controlling ergm.bridge.llr() and logLik.ergm()

Description

Auxiliary functions as user interfaces for fine-tuning the ergm.bridge.llr() algorithm, which
approximates log likelihood ratios using bridge sampling.

By default, the bridge sampler inherits its control parameters from the ergm() fit; control.logLik.ergm()
allows the user to selectively override them.

Usage

control.ergm.bridge(
bridge.nsteps = 16,
bridge.target.se = NULL,
bridge.bidirectional = TRUE,
drop = TRUE,
MCMC.burnin = MCMC.interval * 128,
MCMC.burnin.between = max(ceiling(MCMC.burnin/sqrt(bridge.nsteps)), MCMC.interval * 16),
MCMC.interval = 128,

https://doi.org/10.1109/bigdata.2017.8257919
https://doi.org/10.6339/23-JDS1094
https://doi.org/10.1080/01621459.1990.10475327
https://doi.org/10.1093/biomet/asz002
https://www2.math.su.se/matstat/reports/master/2011/rep2/report.pdf
https://www2.math.su.se/matstat/reports/master/2011/rep2/report.pdf

control.ergm.bridge 61

MCMC.samplesize = 16384,
obs.MCMC.burnin = obs.MCMC.interval * 128,
obs.MCMC.burnin.between = max(ceiling(obs.MCMC.burnin/sqrt(bridge.nsteps)),
obs.MCMC.interval * 16),

obs.MCMC.interval = MCMC.interval,
obs.MCMC.samplesize = MCMC.samplesize,
MCMC.prop = trim_env(~sparse + .triadic),
MCMC.prop.weights = "default",
MCMC.prop.args = list(),
obs.MCMC.prop = MCMC.prop,
obs.MCMC.prop.weights = MCMC.prop.weights,
obs.MCMC.prop.args = MCMC.prop.args,
MCMC.maxedges = Inf,
MCMC.packagenames = c(),
term.options = list(),
seed = NULL,
parallel = 0,
parallel.type = NULL,
parallel.version.check = TRUE,
parallel.inherit.MT = FALSE,
...

)

control.logLik.ergm(
bridge.nsteps = 16,
bridge.target.se = NULL,
bridge.bidirectional = TRUE,
drop = NULL,
MCMC.burnin = NULL,
MCMC.interval = NULL,
MCMC.samplesize = NULL,
obs.MCMC.samplesize = MCMC.samplesize,
obs.MCMC.interval = MCMC.interval,
obs.MCMC.burnin = MCMC.burnin,
MCMC.prop = NULL,
MCMC.prop.weights = NULL,
MCMC.prop.args = NULL,
obs.MCMC.prop = MCMC.prop,
obs.MCMC.prop.weights = MCMC.prop.weights,
obs.MCMC.prop.args = MCMC.prop.args,
MCMC.maxedges = Inf,
MCMC.packagenames = NULL,
term.options = NULL,
seed = NULL,
parallel = NULL,
parallel.type = NULL,
parallel.version.check = TRUE,
parallel.inherit.MT = FALSE,

62 control.ergm.bridge

...
)

Arguments

bridge.nsteps Number of geometric bridges to use.
bridge.target.se

If not NULL, if the estimated MCMC standard error of the likelihood estimate
exceeds this, repeat the bridge sampling, accumulating samples.

bridge.bidirectional

Whether the bridge sampler first bridges from from to to, then from to to from
(skipping the first burn-in), etc. if multiple attempts are required.

drop See control.ergm().

MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to
a fairly large number.

MCMC.burnin.between

Number of proposals between the bridges; typically, less and less is needed as
the number of steps decreases.

MCMC.interval Number of proposals between sampled statistics.
MCMC.samplesize

Number of network statistics, randomly drawn from a given distribution on the
set of all networks, returned by the Metropolis-Hastings algorithm.

obs.MCMC.burnin, obs.MCMC.burnin.between, obs.MCMC.interval,
obs.MCMC.samplesize

The obs versions of these arguments are for the unobserved data simulation
algorithm.

MCMC.prop Specifies the proposal (directly) and/or a series of "hints" about the structure
of the model being sampled. The specification is in the form of a one-sided
formula with hints separated by + operations. If the LHS exists and is a string,
the proposal to be used is selected directly.
A common and default "hint" is ~sparse, indicating that the network is sparse
and that the sample should put roughly equal weight on selecting a dyad with or
without a tie as a candidate for toggling.

MCMC.prop.weights

Specifies the proposal distribution used in the MCMC Metropolis-Hastings al-
gorithm. Possible choices depending on selected reference and constraints
arguments of the ergm() function, but often include "TNT" and "random", and
the "default" is to use the one with the highest priority available.

MCMC.prop.args An alternative, direct way of specifying additional arguments to proposal.
obs.MCMC.prop, obs.MCMC.prop.weights, obs.MCMC.prop.args

The obs versions of these arguments are for the unobserved data simulation
algorithm.

MCMC.maxedges The maximum number of edges that may occur during the MCMC sampling. If
this number is exceeded at any time, sampling is stopped immediately.

control.gof 63

MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

term.options A list of additional arguments to be passed to term initializers. See ? term.options.

seed Seed value (integer) for the random number generator. See set.seed().

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See ergm-parallel for details and troubleshooting.

parallel.type API to use for parallel processing. Defaults to using the parallel package with
PSOCK clusters. See ergm-parallel.

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

parallel.inherit.MT

Logical: If TRUE, slave nodes and processes inherit the set.MT_terms() set-
ting.

... A dummy argument to catch deprecated or mistyped control parameters.

Details

control.ergm.bridge() is only used within a call to the ergm.bridge.llr(), ergm.bridge.dindstart.llk(),
or ergm.bridge.0.llk() functions.

control.logLik.ergm() is only used within a call to the logLik.ergm().

Value

A list with arguments as components.

See Also

ergm.bridge.llr()

logLik.ergm()

control.gof Auxiliary for Controlling ERGM Goodness-of-Fit Evaluation

Description

Auxiliary function as user interface for fine-tuning ERGM Goodness-of-Fit Evaluation.

The control.gof.ergm version is intended to be used with gof.ergm() specifically and will "in-
herit" as many control parameters from ergm fit as possible().

https://CRAN.R-project.org/package=ergm

64 control.gof

Usage

control.gof.formula(
nsim = 100,
MCMC.burnin = 10000,
MCMC.interval = 1000,
MCMC.batch = 0,
MCMC.prop = trim_env(~sparse + .triadic),
MCMC.prop.weights = "default",
MCMC.prop.args = list(),
MCMC.maxedges = Inf,
MCMC.packagenames = c(),
MCMC.runtime.traceplot = FALSE,
network.output = "network",
seed = NULL,
parallel = 0,
parallel.type = NULL,
parallel.version.check = TRUE,
parallel.inherit.MT = FALSE

)

control.gof.ergm(
nsim = 100,
MCMC.burnin = NULL,
MCMC.interval = NULL,
MCMC.batch = NULL,
MCMC.prop = NULL,
MCMC.prop.weights = NULL,
MCMC.prop.args = NULL,
MCMC.maxedges = NULL,
MCMC.packagenames = NULL,
MCMC.runtime.traceplot = FALSE,
network.output = "network",
seed = NULL,
parallel = 0,
parallel.type = NULL,
parallel.version.check = TRUE,
parallel.inherit.MT = FALSE

)

Arguments

nsim Number of networks to be randomly drawn using Markov chain Monte Carlo.
This sample of networks provides the basis for comparing the model to the ob-
served network.

MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to
a fairly large number.

MCMC.interval Number of proposals between sampled statistics.

control.gof 65

MCMC.batch if not 0 or NULL, sample about this many networks per call to the lower-level
code; this can be useful if output= is a function, where it can be used to limit
the number of networks held in memory at any given time.

MCMC.prop Specifies the proposal (directly) and/or a series of "hints" about the structure
of the model being sampled. The specification is in the form of a one-sided
formula with hints separated by + operations. If the LHS exists and is a string,
the proposal to be used is selected directly.
A common and default "hint" is ~sparse, indicating that the network is sparse
and that the sample should put roughly equal weight on selecting a dyad with or
without a tie as a candidate for toggling.

MCMC.prop.weights

Specifies the proposal distribution used in the MCMC Metropolis-Hastings al-
gorithm. Possible choices depending on selected reference and constraints
arguments of the ergm() function, but often include "TNT" and "random", and
the "default" is to use the one with the highest priority available.

MCMC.prop.args An alternative, direct way of specifying additional arguments to proposal.
MCMC.maxedges The maximum number of edges that may occur during the MCMC sampling. If

this number is exceeded at any time, sampling is stopped immediately.
MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

MCMC.runtime.traceplot

Logical: If TRUE, plot traceplots of the MCMC sample.
network.output R class with which to output networks. The options are "network" (default) and

"edgelist.compressed" (which saves space but only supports networks without
vertex attributes)

seed Seed value (integer) for the random number generator. See set.seed().
parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).

See ergm-parallel for details and troubleshooting.
parallel.type API to use for parallel processing. Defaults to using the parallel package with

PSOCK clusters. See ergm-parallel.
parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

parallel.inherit.MT

Logical: If TRUE, slave nodes and processes inherit the set.MT_terms() set-
ting.

Details

This function is only used within a call to the gof() function. See the Usage section in gof() for
details.

Value

A list with arguments as components.

https://CRAN.R-project.org/package=ergm

66 control.san

See Also

gof(). The control.simulate() function performs a similar function for simulate.ergm();
control.ergm() performs a similar function for ergm().

control.san Auxiliary for Controlling SAN

Description

Auxiliary function as user interface for fine-tuning simulated annealing algorithm.

Usage

control.san(
SAN.maxit = 4,
SAN.tau = 1,
SAN.invcov = NULL,
SAN.invcov.diag = FALSE,
SAN.nsteps.alloc = function(nsim) 2^seq_len(nsim),
SAN.nsteps = 2^19,
SAN.samplesize = 2^12,
SAN.prop = trim_env(~sparse + .triadic),
SAN.prop.weights = "default",
SAN.prop.args = list(),
SAN.packagenames = c(),
SAN.ignore.finite.offsets = TRUE,
term.options = list(),
seed = NULL,
parallel = 0,
parallel.type = NULL,
parallel.version.check = TRUE,
parallel.inherit.MT = FALSE

)

Arguments

SAN.maxit Number of temperature levels to use.

SAN.tau Tuning parameter, specifying the temperature of the process during the penul-
timate iteration. (During the last iteration, the temperature is set to 0, resulting
in a greedy search, and during the previous iterations, the temperature is set to
SAN.tau*(iterations left after this one).

SAN.invcov Initial inverse covariance matrix used to calculate Mahalanobis distance in de-
termining how far a proposed MCMC move is from the target.stats vector.
If NULL, initially set to the identity matrix. In either case, during subsequent
runs, it is estimated empirically.

control.san 67

SAN.invcov.diag

Whether to only use the diagonal of the covariance matrix. It seems to work
better in practice.

SAN.nsteps.alloc

Either a numeric vector or a function of the number of runs giving a sequence
of relative lengths of simulated annealing runs.

SAN.nsteps Number of MCMC proposals for all the annealing runs combined.

SAN.samplesize Number of realisations’ statistics to obtain for tuning purposes.

SAN.prop Specifies the proposal (directly) and/or a series of "hints" about the structure
of the model being sampled. The specification is in the form of a one-sided
formula with hints separated by + operations. If the LHS exists and is a string,
the proposal to be used is selected directly.
A common and default "hint" is ~sparse, indicating that the network is sparse
and that the sample should put roughly equal weight on selecting a dyad with or
without a tie as a candidate for toggling.

SAN.prop.weights

Specifies the proposal distribution used in the SAN Metropolis-Hastings algo-
rithm. Possible choices depending on selected reference and constraints
arguments of the ergm() function, but often include "TNT" and "random", and
the "default" is to use the one with the highest priority available.

SAN.prop.args An alternative, direct way of specifying additional arguments to proposal.
SAN.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

SAN.ignore.finite.offsets

Whether SAN should ignore (treat as 0) finite offsets.

term.options A list of additional arguments to be passed to term initializers. See ? term.options.

seed Seed value (integer) for the random number generator. See set.seed().

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See ergm-parallel for details and troubleshooting.

parallel.type API to use for parallel processing. Defaults to using the parallel package with
PSOCK clusters. See ergm-parallel.

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

parallel.inherit.MT

Logical: If TRUE, slave nodes and processes inherit the set.MT_terms() set-
ting.

Details

This function is only used within a call to the san() function. See the Usage section in san() for
details.

https://CRAN.R-project.org/package=ergm

68 control.simulate.ergm

Value

A list with arguments as components.

See Also

san()

control.simulate.ergm Auxiliary for Controlling ERGM Simulation

Description

Auxiliary function as user interface for fine-tuning ERGM simulation. control.simulate, control.simulate.formula,
and control.simulate.formula.ergm are all aliases for the same function.

While the others supply a full set of simulation settings, control.simulate.ergm when passed
as a control parameter to simulate.ergm() allows some settings to be inherited from the ERGM
stimation while overriding others.

Usage

control.simulate.formula.ergm(
MCMC.burnin = MCMC.interval * 16,
MCMC.interval = 1024,
MCMC.prop = trim_env(~sparse + .triadic),
MCMC.prop.weights = "default",
MCMC.prop.args = list(),
MCMC.batch = NULL,
MCMC.effectiveSize = NULL,
MCMC.effectiveSize.damp = 10,
MCMC.effectiveSize.maxruns = 1000,
MCMC.effectiveSize.burnin.pval = 0.2,
MCMC.effectiveSize.burnin.min = 0.05,
MCMC.effectiveSize.burnin.max = 0.5,
MCMC.effectiveSize.burnin.nmin = 16,
MCMC.effectiveSize.burnin.nmax = 128,
MCMC.effectiveSize.burnin.PC = FALSE,
MCMC.effectiveSize.burnin.scl = 1024,
MCMC.effectiveSize.order.max = NULL,
MCMC.maxedges = Inf,
MCMC.packagenames = c(),
MCMC.runtime.traceplot = FALSE,
network.output = "network",
term.options = NULL,
parallel = 0,
parallel.type = NULL,
parallel.version.check = TRUE,

control.simulate.ergm 69

parallel.inherit.MT = FALSE,
...

)

control.simulate(
MCMC.burnin = MCMC.interval * 16,
MCMC.interval = 1024,
MCMC.prop = trim_env(~sparse + .triadic),
MCMC.prop.weights = "default",
MCMC.prop.args = list(),
MCMC.batch = NULL,
MCMC.effectiveSize = NULL,
MCMC.effectiveSize.damp = 10,
MCMC.effectiveSize.maxruns = 1000,
MCMC.effectiveSize.burnin.pval = 0.2,
MCMC.effectiveSize.burnin.min = 0.05,
MCMC.effectiveSize.burnin.max = 0.5,
MCMC.effectiveSize.burnin.nmin = 16,
MCMC.effectiveSize.burnin.nmax = 128,
MCMC.effectiveSize.burnin.PC = FALSE,
MCMC.effectiveSize.burnin.scl = 1024,
MCMC.effectiveSize.order.max = NULL,
MCMC.maxedges = Inf,
MCMC.packagenames = c(),
MCMC.runtime.traceplot = FALSE,
network.output = "network",
term.options = NULL,
parallel = 0,
parallel.type = NULL,
parallel.version.check = TRUE,
parallel.inherit.MT = FALSE,
...

)

control.simulate.formula(
MCMC.burnin = MCMC.interval * 16,
MCMC.interval = 1024,
MCMC.prop = trim_env(~sparse + .triadic),
MCMC.prop.weights = "default",
MCMC.prop.args = list(),
MCMC.batch = NULL,
MCMC.effectiveSize = NULL,
MCMC.effectiveSize.damp = 10,
MCMC.effectiveSize.maxruns = 1000,
MCMC.effectiveSize.burnin.pval = 0.2,
MCMC.effectiveSize.burnin.min = 0.05,
MCMC.effectiveSize.burnin.max = 0.5,
MCMC.effectiveSize.burnin.nmin = 16,

70 control.simulate.ergm

MCMC.effectiveSize.burnin.nmax = 128,
MCMC.effectiveSize.burnin.PC = FALSE,
MCMC.effectiveSize.burnin.scl = 1024,
MCMC.effectiveSize.order.max = NULL,
MCMC.maxedges = Inf,
MCMC.packagenames = c(),
MCMC.runtime.traceplot = FALSE,
network.output = "network",
term.options = NULL,
parallel = 0,
parallel.type = NULL,
parallel.version.check = TRUE,
parallel.inherit.MT = FALSE,
...

)

control.simulate.ergm(
MCMC.burnin = NULL,
MCMC.interval = NULL,
MCMC.scale = 1,
MCMC.prop = NULL,
MCMC.prop.weights = NULL,
MCMC.prop.args = NULL,
MCMC.batch = NULL,
MCMC.effectiveSize = NULL,
MCMC.effectiveSize.damp = 10,
MCMC.effectiveSize.maxruns = 1000,
MCMC.effectiveSize.burnin.pval = 0.2,
MCMC.effectiveSize.burnin.min = 0.05,
MCMC.effectiveSize.burnin.max = 0.5,
MCMC.effectiveSize.burnin.nmin = 16,
MCMC.effectiveSize.burnin.nmax = 128,
MCMC.effectiveSize.burnin.PC = FALSE,
MCMC.effectiveSize.burnin.scl = 1024,
MCMC.effectiveSize.order.max = NULL,
MCMC.maxedges = Inf,
MCMC.packagenames = NULL,
MCMC.runtime.traceplot = FALSE,
network.output = "network",
term.options = NULL,
parallel = 0,
parallel.type = NULL,
parallel.version.check = TRUE,
parallel.inherit.MT = FALSE,
...

)

control.simulate.ergm 71

Arguments

MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to
a fairly large number.

MCMC.interval Number of proposals between sampled statistics.

MCMC.prop Specifies the proposal (directly) and/or a series of "hints" about the structure
of the model being sampled. The specification is in the form of a one-sided
formula with hints separated by + operations. If the LHS exists and is a string,
the proposal to be used is selected directly.
A common and default "hint" is ~sparse, indicating that the network is sparse
and that the sample should put roughly equal weight on selecting a dyad with or
without a tie as a candidate for toggling.

MCMC.prop.weights

Specifies the proposal distribution used in the MCMC Metropolis-Hastings al-
gorithm. Possible choices depending on selected reference and constraints
arguments of the ergm() function, but often include "TNT" and "random", and
the "default" is to use the one with the highest priority available.

MCMC.prop.args An alternative, direct way of specifying additional arguments to proposal.

MCMC.batch if not 0 or NULL, sample about this many networks per call to the lower-level
code; this can be useful if output= is a function, where it can be used to limit
the number of networks held in memory at any given time.

MCMC.effectiveSize, MCMC.effectiveSize.damp,
MCMC.effectiveSize.maxruns, MCMC.effectiveSize.burnin.pval,
MCMC.effectiveSize.burnin.min, MCMC.effectiveSize.burnin.max,
MCMC.effectiveSize.burnin.nmin, MCMC.effectiveSize.burnin.nmax,
MCMC.effectiveSize.burnin.PC, MCMC.effectiveSize.burnin.scl,
MCMC.effectiveSize.order.max

Set MCMC.effectiveSize to a non-NULL value to adaptively determine the
burn-in and the MCMC length needed to get the specified effective size; 50 is
a reasonable value. In the adaptive MCMC mode, MCMC is run forward repeat-
edly (MCMC.samplesize*MCMC.interval steps, up to MCMC.effectiveSize.maxruns
times) until the target effective sample size is reached or exceeded.
After each run, the returned statistics are mapped to the estimating function
scale, then an exponential decay model is fit to the scaled statistics to find that
burn-in which would reduce the difference between the initial values of statistics
and their equilibrium values by a factor of MCMC.effectiveSize.burnin.scl
of what it initially was, bounded by MCMC.effectiveSize.min and MCMC.effectiveSize.max
as proportions of sample size. If the best-fitting decay exceeds MCMC.effectiveSize.max,
the exponential model is considered to be unsuitable and MCMC.effectiveSize.min
is used.
A Geweke diagnostic is then run, after thinning the sample to MCMC.effectiveSize.burnin.nmax.
If this Geweke diagnostic produces a p-value higher than MCMC.effectiveSize.burnin.pval,
it is accepted.
If MCMC.effectiveSize.burnin.PC>0, instead of using the full sample for
burn-in estimation, at most this many principal components are used instead.
The effective size of the post-burn-in sample is computed via Vats et al. (2019),
and compared to the target effective size. If it is not matched, the MCMC run is

72 control.simulate.ergm

resumed, with the additional draws needed linearly extrapolated but weighted in
favor of the baseline MCMC.samplesize by the weighting factor MCMC.effectiveSize.damp
(higher = less damping). Lastly, if after an MCMC run, the number of samples
equals or exceeds 2*MCMC.samplesize, the chain will be thinned by 2 until it
falls below that, while doubling MCMC.interval. MCMC.effectiveSize.order.max
can be used to set the order of the AR model used to estimate the effective sam-
ple size and the variance for the Geweke diagnostic.
Lastly, if MCMC.effectiveSize is a matrix, say, W , it will be treated as a target
precision (inverse-variance) matrix. If V is the sample covariance matrix, the
target effective size neff will be set such that V/neff is close to W in magnitude,
specifically that tr((V/neff)W)/p ≈ 1.

MCMC.maxedges The maximum number of edges that may occur during the MCMC sampling. If
this number is exceeded at any time, sampling is stopped immediately.

MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

MCMC.runtime.traceplot

Logical: If TRUE, plot traceplots of the MCMC sample.

network.output R class with which to output networks. The options are "network" (default) and
"edgelist.compressed" (which saves space but only supports networks without
vertex attributes)

term.options A list of additional arguments to be passed to term initializers. See ? term.options.

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See ergm-parallel for details and troubleshooting.

parallel.type API to use for parallel processing. Defaults to using the parallel package with
PSOCK clusters. See ergm-parallel.

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

parallel.inherit.MT

Logical: If TRUE, slave nodes and processes inherit the set.MT_terms() set-
ting.

... A dummy argument to catch deprecated or mistyped control parameters.

MCMC.scale For control.simulate.ergm() inheriting MCMC.burnin and MCMC.interval
from the ergm fit, the multiplier for the inherited values. This can be useful be-
cause MCMC parameters used in the fit are tuned to generate a specific effective
sample size for the sufficient statistic in a large MCMC sample, so the inherited
values might not generate independent realisations.

Details

This function is only used within a call to the ERGM simulate() function. See the Usage section
in simulate.ergm() for details.

https://CRAN.R-project.org/package=ergm

ctriple-ergmTerm 73

Value

A list with arguments as components.

See Also

simulate.ergm(), simulate.formula(). control.ergm() performs a similar function for ergm();
control.gof() performs a similar function for gof().

ctriple-ergmTerm Cyclic triples

Description

By default, this term adds one statistic to the model, equal to the number of cyclic triples in the
network, defined as a set of edges of the form {(i→j), (j→k), (k→i)} .

Usage

binary: ctriple(attr=NULL, diff=FALSE, levels=NULL)

binary: ctriad

Arguments

attr, diff quantitative attribute (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.) If attr is specified and diff is FALSE , then the statistic is the num-
ber of cyclic triples where all three nodes have the same value of the attribute. If
attr is specified and diff is TRUE , then one statistic is added to the model for
each value of attr, equal to the number of cyclic triples where all three nodes
have that value of the attribute.

levels specifies the value of attr to consider if attr is passed and diff=TRUE. (See
Specifying Vertex attributes and Levels (?nodal_attributes) for details.)

Note

This term can only be used with directed networks.

for all directed networks, triangle is equal to ttriple+ctriple , so at most two of these three
terms can be in a model.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, directed, triad-related, binary

74 Curve-ergmTerm

Curve-ergmTerm Impose a curved structure on term parameters

Description

Arguments may have the same forms as in the API, but for convenience, alternative forms are
accepted.

If the model in formula is curved, then the outputs of this operator term’s map argument will be
used as inputs to the curved terms of the formula model.

Curve is an obsolete alias and may be deprecated and removed in a future release.

Usage

binary: Curve(formula, params, map, gradient=NULL, minpar=-Inf, maxpar=+Inf, cov=NULL)

binary: Parametrise(formula, params, map, gradient=NULL, minpar=-Inf, maxpar=+Inf,
cov=NULL)

binary: Parametrize(formula, params, map, gradient=NULL, minpar=-Inf, maxpar=+Inf,
cov=NULL)

valued: Curve(formula, params, map, gradient=NULL, minpar=-Inf, maxpar=+Inf, cov=NULL)

valued: Parametrise(formula, params, map, gradient=NULL, minpar=-Inf, maxpar=+Inf,
cov=NULL)

valued: Parametrize(formula, params, map, gradient=NULL, minpar=-Inf, maxpar=+Inf,
cov=NULL)

Arguments

formula a one-sided ergm()-style formula with the terms to be evaluated

params a named list whose names are the curved parameter names, may also be a char-
acter vector with names.

map the mapping from curved to canonical. May have the following forms:

• a function(x, n, ...) treated as in the API: called with x set to the
curved parameter vector, n to the length of output expected, and cov , if
present, passed in The function must return a numeric vector of length
n .

• a numeric vector to fix the output coefficients, like in an offset.
• a character string to select (partially-matched) one of predefined forms.

Currently, the defined forms include:
– "rep" recycle the input vector to the length of the output vector as a
rep function would.

cycle-ergmTerm 75

gradient its gradient function. It is optional if map is constant or one of the predefined
forms; otherwise it must have one of the following forms:

• a function(x, n, ...) treated as in the API: called with x set to the
curved parameter vector, n to the length of output expected, and cov , if
present, passed in The function must return a numeric matrix with
length(params) rows and n columns.

• a numeric matrix to fix the gradient; this is useful when map is linear.
• a character string to select (partially-matched) one of predefined forms.

Currently, the defined forms include:
– "linear" calculate the (constant) gradient matrix using finite differ-

ences. Note that this will be done only once at the initialization stage,
so use only if you are certain map is, in fact, linear.

minpar, maxpar the minimum and maximum allowed curved parameter values. The parameters
will be recycled to the appropriate length.

cov optional

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: operator, binary, valued

cycle-ergmTerm k-Cycle Census

Description

This term adds one network statistic to the model for each value of k , corresponding to the number
of k -cycles (or, alternately, semicycles) in the graph.

This term can be used with either directed or undirected networks.

Usage

binary: cycle(k, semi=FALSE)

Arguments

k a vector of integers giving the cycle lengths to count. Directed cycle lengths may
range from 2 to N (the network size); undirected cycle lengths and semicycle
lengths may range from 3 to N ; length 2 semicycles are not currently supported.

semi an optional logical indicating whether semicycles (rather than directed cycles)
should be counted; this is ignored in the undirected case.

directed 2-cycles are equivalent to mutual dyads.

76 cyclicalweights-ergmTerm

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, undirected, binary

cyclicalties-ergmTerm Cyclical ties

Description

This term adds one statistic, equal to the number of ties i→ j such that there exists a two-path from
j to i . (Related to the ttriple term.)

Usage

binary: cyclicalties(attr=NULL, levels=NULL)

valued: cyclicalties(threshold=0)

Arguments

attr quantitative attribute (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.) If set, all three nodes involved (i , j , and the node on the two-path)
must match on this attribute in order for i→ j to be counted.

levels TODO (See Specifying Vertex attributes and Levels (?nodal_attributes) for
details.)

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, undirected, binary, valued

cyclicalweights-ergmTerm

Cyclical weights

Description

This statistic implements the cyclical weights statistic, like that defined by Krivitsky (2012), Equa-
tion 13, but with the focus dyad being yj,i rather than yi,j . For each option, the first (and the
default) is more stable but also more conservative, while the second is more sensitive but more
likely to induce a multimodal distribution of networks.

degcor-ergmTerm 77

Usage

valued: cyclicalweights(twopath="min", combine="max", affect="min")

Arguments

twopath the minimum of the constituent dyads ("min") or their geometric mean (
"geomean")

combine the maximum of the 2-path strengths ("max") or their sum ("sum")

affected the minimum of the focus dyad and the combined strength of the two paths (
"min") or their geometric mean ("geomean")

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, nonnegative, undirected, valued

degcor-ergmTerm Degree Correlation

Description

This term adds one network statistic equal to the correlation of the degrees of all pairs of nodes in
the network which are tied. Only coded for undirected networks.

Usage

binary: degcor

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: undirected, binary

78 degrange-ergmTerm

degcrossprod-ergmTerm Degree Cross-Product

Description

This term adds one network statistic equal to the mean of the cross-products of the degrees of all
pairs of nodes in the network which are tied. Only coded for undirected networks.

Usage

binary: degcrossprod

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: undirected, binary

degrange-ergmTerm Degree range

Description

This term adds one network statistic to the model for each element of from (or to); the i th such
statistic equals the number of nodes in the network of degree greater than or equal to from[i] but
strictly less than to[i] , i.e. with edges in semiopen interval [from,to) .

Usage

binary: degrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL)

Arguments

from, to vectors of distinct integers. If one of the vectors have length 1, it is recycled to
the length of the other. Otherwise, it must have the same length.

by, levels, homophily
the optional argument by specifies a vertex attribute (see Specifying Vertex at-
tributes and Levels (?nodal_attributes) for details). If this is specified and
homophily is TRUE , then degrees are calculated using the subnetwork consist-
ing of only edges whose endpoints have the same value of the by attribute. If
by is specified and homophily is FALSE (the default), then separate degree range
statistics are calculated for nodes having each separate value of the attribute.
levels selects which levels of by‘ to include.

degree-ergmTerm 79

Details

This term can only be used with undirected networks; for directed networks see idegrange and
odegrange . This term can be used with bipartite networks, and will count nodes of both first and
second mode in the specified degree range. To count only nodes of the first mode ("actors"), use
b1degrange and to count only those fo the second mode ("events"), use b2degrange .

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, undirected, binary

degree-ergmTerm Degree

Description

This term adds one network statistic to the model for each element in d ; the i th such statistic equals
the number of nodes in the network of degree d[i] , i.e. with exactly d[i] edges. This term can
only be used with undirected networks; for directed networks see idegree and odegree .

Usage

binary: degree(d, by=NULL, homophily=FALSE, levels=NULL)

Arguments

d vector of distinct integers
by, levels, homophily

the optional argument by specifies a vertex attribute (see Specifying Vertex at-
tributes and Levels (?nodal_attributes) for details). If this is specified and
homophily is TRUE , then degrees are calculated using the subnetwork consist-
ing of only edges whose endpoints have the same value of the by attribute. If
by is specified and homophily is FALSE (the default), then separate degree range
statistics are calculated for nodes having each separate value of the attribute.
levels selects which levels of by‘ to include.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, frequently-used, undirected, binary

80 degreedist

degree1.5-ergmTerm Degree to the 3/2 power

Description

This term adds one network statistic to the model equaling the sum over the actors of each actor’s
degree taken to the 3/2 power (or, equivalently, multiplied by its square root). This term is an
undirected analog to the terms of Snijders et al. (2010), equations (11) and (12). This term can only
be used with undirected networks.

Usage

binary: degree1.5

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: undirected, binary

degreedist Computes and Returns the Degree Distribution Information for a
Given Network

Description

The degreedist generic computes and returns the degree distribution (number of vertices in the
network with each degree value) for a given network. This help page documents the function. For
help about the ERGM sample space constraint with that name, try help("degreedist-constraint").

Usage

degreedist(object, ...)

S3 method for class 'network'
degreedist(object, print = TRUE, ...)

Arguments

object a network object or some other object for which degree distribution is meaning-
ful.

... Additional arguments to functions.

print logical, whether to print the degree distribution.

degreedist-ergmConstraint 81

Value

If directed, a matrix of the distributions of in and out degrees; this is row bound and only contains
degrees for which one of the in or out distributions has a positive count. If bipartite, a list containing
the degree distributions of b1 and b2. Otherwise, a vector of the positive values in the degree
distribution

Methods (by class)

• degreedist(network): Method for network objects.

Examples

data(faux.mesa.high)
degreedist(faux.mesa.high)

degreedist-ergmConstraint

Preserve the degree distribution of the given network

Description

Only networks whose degree distributions are the same as those in the network passed in the model
formula have non-zero probability.

Usage

degreedist

See Also

ergmConstraint for index of constraints and hints currently visible to the package.

Keywords: directed, undirected

82 density-ergmTerm

degrees-ergmConstraint

Preserve the degree of each vertex of the given network

Description

Only networks whose vertex degrees are the same as those in the network passed in the model
formula have non-zero probability. If the network is directed, both indegree and outdegree are
preserved.

Usage

degrees

nodedegrees

See Also

ergmConstraint for index of constraints and hints currently visible to the package.

Keywords: directed, undirected

density-ergmTerm Density

Description

This term adds one network statistic equal to the density of the network. For undirected networks,
density equals kstar(1) or edges divided by n(n−1)/2 ; for directed networks, density equals
edges or istar(1) or ostar(1) divided by n(n− 1) .

Usage

binary: density

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, dyad-independent, undirected, binary

diff-ergmTerm 83

diff-ergmTerm Difference

Description

For values of pow other than 0 , this term adds one network statistic to the model, equaling the
sum, over directed edges (i, j) , of sign.action(attr[i]-attr[j])^pow if dir is "t-h" and
of sign.action(attr[j]-attr[i])^pow if "h-t" . That is, the argument dir determines which
vertex’s attribute is subtracted from which, with tail being the origin of a directed edge and head
being its destination, and bipartite networks’ edges being treated as going from the first part (b1) to
the second (b2).

If pow==0 , the exponentiation is replaced by the signum function: +1 if the difference is positive, 0
if there is no difference, and -1 if the difference is negative. Note that this function is applied after
the sign.action . The comparison is exact, so when using calculated values of attr , ensure that
values that you want to be considered equal are, in fact, equal.

Usage

binary: diff(attr, pow=1, dir="t-h", sign.action="identity")

valued: diff(attr, pow=1, dir="t-h", sign.action="identity", form ="sum")

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

pow exponent for the node difference

dir determines which vertix’s attribute is subtracted from which. Accepts: "t-h"
(the default), "tail-head" , "b1-b2", "h-t" , "head-tail" , and "b2-b1" .

sign.action one of "identity", "abs", "posonly", "negonly". The following sign.actions
are possible:

• "identity" (the default) no transformation of the difference regardless of
sign

• "abs" absolute value of the difference: equivalent to the absdiff term
• "posonly" positive differences are kept, negative differences are replaced

by 0
• "negonly" negative differences are kept, positive differences are replaced

by 0

form character how to aggregate tie values in a valued ERGM

Note

this term may not be meaningful for unipartite undirected networks unless sign.action=="abs" .
When used on such a network, it behaves as if all edges were directed, going from the lower-indexed
vertex to the higher-indexed vertex.

84 dsp-ergmTerm

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, directed, dyad-independent, frequently-used, quantitative nodal attribute,
undirected, binary, valued

DiscUnif-ergmReference

Discrete Uniform reference

Description

Specifies each dyad’s baseline distribution to be discrete uniform between a and b (both inclusive):
h(y) = 1 , with the support being a, a+1, . . . , b-1, b.

Usage

DiscUnif(a,b)

Arguments

a, b minimum and maximum to the baseline discrete uniform distribution, both in-
clusive. Both values must be finite.

See Also

ergmReference for index of reference distributions currently visible to the package.

Keywords: discrete, finite

dsp-ergmTerm Directed dyadwise shared partners

Description

This term adds one network statistic to the model for each element in d where the i th such statistic
equals the number of dyads in the network with exactly d[i] shared partners.

Usage

binary: ddsp(d, type="OTP")

binary: dsp(d, type="OTP")

dsp-ergmTerm 85

Arguments

d a vector of distinct integers

type A string indicating the type of shared partner or path to be considered for di-
rected networks: "OTP" (default for directed), "ITP", "RTP", "OSP", and "ISP";
has no effect for undirected. See the section below on Shared partner types for
details.

Shared partner types

While there is only one shared partner configuration in the undirected case, nine distinct configura-
tions are possible for directed graphs, selected using the type argument. Currently, terms may be
defined with respect to five of these configurations; they are defined here as follows (using termi-
nology from Butts (2008) and the relevent package):

• Outgoing Two-path ("OTP"): vertex k is an OTP shared partner of ordered pair (i, j) iff i →
k → j. Also known as "transitive shared partner".

• Incoming Two-path ("ITP"): vertex k is an ITP shared partner of ordered pair (i, j) iff j →
k → i. Also known as "cyclical shared partner"

• Reciprocated Two-path ("RTP"): vertex k is an RTP shared partner of ordered pair (i, j) iff
i↔ k ↔ j.

• Outgoing Shared Partner ("OSP"): vertex k is an OSP shared partner of ordered pair (i, j) iff
i→ k, j → k.

• Incoming Shared Partner ("ISP"): vertex k is an ISP shared partner of ordered pair (i, j) iff
k → i, k → j.

By default, outgoing two-paths ("OTP") are calculated. Note that Robins et al. (2009) define closely
related statistics to several of the above, using slightly different terminology.

Note

This term takes an additional term option (see options?ergm), cache.sp, controlling whether the
implementation will cache the number of shared partners for each dyad in the network; this is
usually enabled by default.

This term can only be used with directed networks.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, binary

86 dyadnoise-ergmConstraint

dyadcov-ergmTerm Dyadic covariate

Description

This term adds three statistics to the model, each equal to the sum of the covariate values for all
dyads occupying one of the three possible non-empty dyad states (mutual, upper-triangular asym-
metric, and lower-triangular asymmetric dyads, respectively), with the empty or null state serving
as a reference category. If the network is undirected, x is either a matrix of edgewise covariates,
or a network; if the latter, optional argument attrname provides the name of the edge attribute to
use for edge values. This term adds one statistic to the model, equal to the sum of the covariate
values for each edge appearing in the network. The edgecov and dyadcov terms are equivalent for
undirected networks.

Usage

binary: dyadcov(x, attrname=NULL)

Arguments

x, attrname a specification for the dyadic covariate: either one of the following, or the name
of a network attribute containing one of the following:
a covariate matrix with dimensions n×n for unipartite networks and b×(n−

b) for bipartite networks; attrname, if given, is used to construct the term
name.

a network object with the same size and bipartitedness as LHS; attrname, if
given, provides the name of the quantitative edge attribute to use for covari-
ate values (in this case, missing edges in x are assigned a covariate value of
zero).

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, dyad-independent, quantitative dyadic attribute, undirected, binary

dyadnoise-ergmConstraint

A soft constraint to adjust the sampled distribution for dyad-level noise
with known perturbation probabilities

Description

It is assumed that the observed LHS network is a noisy observation of some unobserved true net-
work, with p01 giving the dyadwise probability of erroneously observing a tie where the true net-
work had a non-tie and p10 giving the dyadwise probability of erroneously observing a nontie where
the true network had a tie.

Dyads-ergmConstraint 87

Usage

dyadnoise(p01, p10)

Arguments

p01, p10 can both be scalars or both be adjacency matrices of the same dimension as that
of the LHS network giving these probabilities.

Note

See Karwa et al. (2016) for an application.

See Also

ergmConstraint for index of constraints and hints currently visible to the package.

Keywords: directed, dyad-independent, soft, undirected

Dyads-ergmConstraint Constrain fixed or varying dyad-independent terms

Description

This is an "operator" constraint that takes one or two ergmTerm dyad-independent formulas. For the
terms in the vary= formula, only those that change at least one of the terms will be allowed to vary,
and all others will be fixed. If both formulas are given, the dyads that vary either for one or for the
other will be allowed to vary. Note that a formula passed to Dyads without an argument name will
default to fix= .

Usage

Dyads(fix=NULL, vary=NULL)

Arguments

fix, vary formula with only dyad-independent terms

See Also

ergmConstraint for index of constraints and hints currently visible to the package.

Keywords: directed, dyad-independent, operator, undirected

88 ecoli

ecoli Two versions of an E. Coli network dataset

Description

This network data set comprises two versions of a biological network in which the nodes are operons
in Escherichia Coli and a directed edge from one node to another indicates that the first encodes the
transcription factor that regulates the second.

Usage

data(ecoli)

Details

The network object ecoli1 is directed, with 423 nodes and 519 arcs. The object ecoli2 is an
undirected version of the same network, in which all arcs are treated as edges and the five isolated
nodes (which exhibit only self-regulation in ecoli1) are removed, leaving 418 nodes.

Licenses and Citation

When publishing results obtained using this data set, the original authors (Salgado et al, 2001;
Shen-Orr et al, 2002) should be cited, along with this R package.

Source

The data set is based on the RegulonDB network (Salgado et al, 2001) and was modified by Shen-
Orr et al (2002).

References

Salgado et al (2001), Regulondb (version 3.2): Transcriptional Regulation and Operon Organization
in Escherichia Coli K-12, Nucleic Acids Research, 29(1): 72-74.

Shen-Orr et al (2002), Network Motifs in the Transcriptional Regulation Network of Escerichia
Coli, Nature Genetics, 31(1): 64-68.

%Saul and Filkov (2007)

%Hummel et al (2010)

edgecov-ergmTerm 89

edgecov-ergmTerm Edge covariate

Description

This term adds one statistic to the model, equal to the sum of the covariate values for each edge
appearing in the network. The edgecov term applies to both directed and undirected networks. For
undirected networks the covariates are also assumed to be undirected. The edgecov and dyadcov
terms are equivalent for undirected networks.

Usage

binary: edgecov(x, attrname=NULL)

valued: edgecov(x, attrname=NULL, form="sum")

Arguments

x, attrname a specification for the dyadic covariate: either one of the following, or the name
of a network attribute containing one of the following:

a covariate matrix with dimensions n×n for unipartite networks and b×(n−
b) for bipartite networks; attrname, if given, is used to construct the term
name.

a network object with the same size and bipartitedness as LHS; attrname, if
given, provides the name of the quantitative edge attribute to use for covari-
ate values (in this case, missing edges in x are assigned a covariate value of
zero).

form character how to aggregate tie values in a valued ERGM

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, dyad-independent, frequently-used, quantitative dyadic attribute, undi-
rected, binary, valued

edges-ergmConstraint Preserve the edge count of the given network

Description

Only networks having the same number of edges as the network passed in the model formula have
non-zero probability.

90 egocentric-ergmConstraint

Usage

edges

See Also

ergmConstraint for index of constraints and hints currently visible to the package.

Keywords: None

edges-ergmTerm Number of edges in the network

Description

This term adds one network statistic equal to the number of edges (i.e. nonzero values) in the
network. For undirected networks, edges is equal to kstar(1); for directed networks, edges is
equal to both ostar(1) and istar(1).

Usage

binary: edges

valued: nonzero

valued: edges

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, dyad-independent, undirected, binary, valued

egocentric-ergmConstraint

Preserve values of dyads incident on vertices with given attribute

Description

Preserve values of dyads incident on vertices with attribute attr being TRUE or if attrname is NULL
, the vertex attribute "na" being FALSE.

Usage

egocentric(attr=NULL, direction="both")

enformulate.curved-deprecated 91

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

direction one of "both", "out" and "in", only applies to directed networks. "out" only
preserves the out-dyads of those actors and "in" preserves their in-dyads.

See Also

ergmConstraint for index of constraints and hints currently visible to the package.

Keywords: directed, dyad-independent, undirected

enformulate.curved-deprecated

Convert a curved ERGM into a form suitable as initial values for the
same ergm. Deprecated in 4.0.0.

Description

The generic enformulate.curved converts an ergm object or formula of a model with curved terms
to the variant in which the curved parameters embedded into the formula and are removed from the
parameter vector. This is the form that used to be required by ergm() calls.

Usage

enformulate.curved(object, ...)

S3 method for class 'ergm'
enformulate.curved(object, ...)

S3 method for class 'formula'
enformulate.curved(object, theta, ...)

Arguments

object An ergm object or an ERGM formula. The curved terms of the given formula
(or the formula used in the fit) must have all of their arguments passed by name.

... Unused at this time.
theta Curved model parameter configuration.

Details

Because of a current kludge in ergm(), output from one run cannot be directly passed as initial
values (control.ergm(init=)) for the next run if any of the terms are curved. One workaround is
to embed the curved parameters into the formula (while keeping fixed=FALSE) and remove them
from control.ergm(init=).

This function automates this process for curved ERGM terms included with the ergm package. It
does not work with curved terms not included in ergm.

https://CRAN.R-project.org/package=ergm

92 equalto-ergmTerm

Value

A list with the following components:

formula The formula with curved parameter estimates incorporated.

theta The coefficient vector with curved parameter estimates removed.

See Also

ergm(), simulate.ergm()

equalto-ergmTerm Number of dyads with values equal to a specific value (within toler-
ance)

Description

Adds one statistic equal to the number of dyads whose values are within tolerance of value , i.e.,
between value-tolerance and value+tolerance , inclusive.

Usage

valued: equalto(value=0, tolerance=0)

Arguments

value numerical threshold

tolerance numerical threshold

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, dyad-independent, undirected, valued

ergm 93

ergm Exponential-Family Random Graph Models

Description

ergm() is used to fit exponential-family random graph models (ERGMs), in which the probability
of a given network, y, on a set of nodes is h(y) exp{η(θ) · g(y)}/c(θ), where h(y) is the reference
measure (usually h(y) = 1), g(y) is a vector of network statistics for y, η(θ) is a natural parameter
vector of the same length (with η(θ) = θ for most terms), and c(θ) is the normalizing constant for
the distribution. ergm() can return a maximum pseudo-likelihood estimate, an approximate maxi-
mum likelihood estimate based on a Monte Carlo scheme, or an approximate contrastive divergence
estimate based on a similar scheme. (For an overview of the package (Hunter et al. 2008; Krivitsky
et al. 2023), see ergm.)

Usage

ergm(
formula,
response = NULL,
reference = ~Bernoulli,
constraints = ~.,
obs.constraints = ~. - observed,
offset.coef = NULL,
target.stats = NULL,
eval.loglik = getOption("ergm.eval.loglik"),
estimate = c("MLE", "MPLE", "CD"),
control = control.ergm(),
verbose = FALSE,
...,
basis = ergm.getnetwork(formula),
newnetwork = c("one", "all", "none")

)

is.ergm(object)

S3 method for class 'ergm'
is.na(x)

S3 method for class 'ergm'
anyNA(x, ...)

S3 method for class 'ergm'
nobs(object, ...)

S3 method for class 'ergm'
print(x, digits = max(3, getOption("digits") - 3), ...)

https://CRAN.R-project.org/package=ergm

94 ergm

S3 method for class 'ergm'
vcov(object, sources = c("all", "model", "estimation"), ...)

Arguments

formula An R formula, of the form y ~ <model terms>, where y is a network object or
a matrix that can be coerced to a network object. For the details on the possi-
ble <model terms>, see ergmTerm and Morris, Handcock and Hunter (2008) for
binary ERGM terms and Krivitsky (2012) for valued ERGM terms (terms for
weighted edges). To create a network object in R, use the network() function,
then add nodal attributes to it using the %v% operator if necessary. Enclosing a
model term in offset() fixes its value to one specified in offset.coef. (A sec-
ond argument—a logical or numeric index vector—can be used to select which
of the parameters within the term are offsets.)

response Either a character string, a formula, or NULL (the default), to specify the response
attributes and whether the ERGM is binary or valued. Interpreted as follows:

NULL Model simple presence or absence, via a binary ERGM.
character string The name of the edge attribute whose value is to be modeled.

Type of ERGM will be determined by whether the attribute is logical
(TRUE/FALSE) for binary or numeric for valued.

a formula must be of the form NAME~EXPR|TYPE (with | being literal). EXPR is
evaluated in the formula’s environment with the network’s edge attributes
accessible as variables. The optional NAME specifies the name of the edge
attribute into which the results should be stored, with the default being a
concise version of EXPR. Normally, the type of ERGM is determined by
whether the result of evaluating EXPR is logical or numeric, but the optional
TYPE can be used to override by specifying a scalar of the type involved
(e.g., TRUE for binary and 1 for valued).

reference A one-sided formula specifying the reference measure (h(y)) to be used. See
help for ERGM reference measures implemented in the ergm package.

constraints A formula specifying one or more constraints on the support of the distribution
of the networks being modeled. Multiple constraints may be given, separated
by “+” and “-” operators. See ergmConstraint for the detailed explanation of
their semantics and also for an indexed list of the constraints visible to the ergm
package.
The default is to have no constraints except those provided through the ergmlhs
API.
Together with the model terms in the formula and the reference measure, the
constraints define the distribution of networks being modeled.
It is also possible to specify a proposal function directly either by passing a string
with the function’s name (in which case, arguments to the proposal should be
specified through the MCMC.prop.args argument to the relevant control func-
tion, or by giving it on the LHS of the hints formula to MCMC.prop argument to
the control function. This will override the one chosen automatically.
Note that not all possible combinations of constraints and reference measures
are supported. However, for relatively simple constraints (i.e., those that sim-

ergm 95

ply permit or forbid specific dyads or sets of dyads from changing), arbitrary
combinations should be possible.

obs.constraints

A one-sided formula specifying one or more constraints or other modification in
addition to those specified by constraints, following the same syntax as the
constraints argument.
This allows the domain of the integral in the numerator of the partially obseved
network face-value likelihoods of Handcock and Gile (2010) and Karwa et al.
(2017) to be specified explicitly.
The default is to constrain the integral to only integrate over the missing dyads
(if present), after incorporating constraints provided through the ergmlhs API.
It is also possible to specify a proposal function directly by passing a string
with the function’s name of the obs.MCMC.prop argument to the relevant control
function. In that case, arguments to the proposal should be specified through the
obs.prop.args argument to the relevant control function.

offset.coef A vector of coefficients for the offset terms.

target.stats vector of "observed network statistics," if these statistics are for some reason dif-
ferent than the actual statistics of the network on the left-hand side of formula.
Equivalently, this vector is the mean-value parameter values for the model. If
this is given, the algorithm finds the natural parameter values corresponding to
these mean-value parameters. If NULL, the mean-value parameters used are the
observed statistics of the network in the formula.

eval.loglik Logical: For dyad-dependent models, if TRUE, use bridge sampling to evaluate
the log-likelihoood associated with the fit. Has no effect for dyad-independent
models. Since bridge sampling takes additional time, setting to FALSE may
speed performance if likelihood values (and likelihood-based values like AIC
and BIC) are not needed. Can be set globally via option(ergm.eval.loglik=...),
which is set to TRUE when the package is loaded. (See options?ergm.)

estimate If "MPLE," then the maximum pseudolikelihood estimator is returned. If "MLE"
(the default), then an approximate maximum likelihood estimator is returned.
For certain models, the MPLE and MLE are equivalent, in which case this ar-
gument is ignored. (To force MCMC-based approximate likelihood calculation
even when the MLE and MPLE are the same, see the force.main argument
of control.ergm(). If "CD" (EXPERIMENTAL), the Monte-Carlo contrastive
divergence estimate is returned.)

control A list of control parameters for algorithm tuning, typically constructed with
control.ergm(). Its documentation gives the the list of recognized control pa-
rameters and their meaning. The more generic utility snctrl() (StatNet Con-
TRoL) also provides argument completion for the available control functions
and limited argument name checking.

verbose A logical or an integer to control the amount of progress and diagnostic in-
formation to be printed. FALSE/0 produces minimal output, with higher values
producing more detail. Note that very high values (5+) may significantly slow
down processing.

... Additional arguments, to be passed to lower-level functions.

basis a value (usually a network) to override the LHS of the formula.

96 ergm

newnetwork One of "one" (the default), "all", or "none" (or, equivalently, FALSE), specify-
ing whether the network(s) from the last iteration of the MCMC sampling should
be returned as a part of the fit as a elements newnetwork and newnetworks. (See
their entries in section Value below for details.) Partial matching is supported.

object an ergm object.

x, digits See print().

sources For the vcov method, specify whether to return the covariance matrix from the
ERGM model, the estimation process, or both combined.

Value

ergm() returns an object of ergm that is a list consisting of the following elements:

coef The Monte Carlo maximum likelihood estimate of θ, the vector of coefficients
for the model parameters.

sample The n × p matrix of network statistics, where n is the sample size and p is
the number of network statistics specified in the model, generated by the last
iteration of the MCMC-based likelihood maximization routine. These statistics
are centered with respect to the observed statistics or target.stats, unless
missing data MLE is used.

sample.obs As sample, but for the constrained sample.

iterations The number of Newton-Raphson iterations required before convergence.

MCMCtheta The value of θ used to produce the Markov chain Monte Carlo sample. As
long as the Markov chain mixes sufficiently well, sample is roughly a random
sample from the distribution of network statistics specified by the model with the
parameter equal to MCMCtheta. If estimate="MPLE" then MCMCtheta equals the
MPLE.

loglikelihood The approximate change in log-likelihood in the last iteration. The value is only
approximate because it is estimated based on the MCMC random sample.

gradient The value of the gradient vector of the approximated loglikelihood function,
evaluated at the maximizer. This vector should be very close to zero.

covar Approximate covariance matrix for the MLE, based on the inverse Hessian of
the approximated loglikelihood evaluated at the maximizer.

failure Logical: Did the MCMC estimation fail?

network Network passed on the left-hand side of formula. If target.stats are passed,
it is replaced by the network returned by san().

newnetworks If argument newnetwork is "all", a list of the final networks at the end of the
MCMC simulation, one for each thread.

newnetwork If argument newnetwork is "one" or "all", the first (possibly only) element of
newnetworks.

coef.init The initial value of θ.

est.cov The covariance matrix of the model statistics in the final MCMC sample.
coef.hist, steplen.hist, stats.hist, stats.obs.hist

For the MCMLE method, the history of coefficients, Hummel step lengths, and
average model statistics for each iteration..

ergm 97

control The control list passed to the call.
etamap The set of functions mapping the true parameter theta to the canonical parameter

eta (irrelevant except in a curved exponential family model)
formula The original formula passed to ergm().
target.stats The target.stats used during estimation (passed through from the Arguments)
target.esteq Used for curved models to preserve the target mean values of the curved terms.

It is identical to target.stats for non-curved models.
constraints Constraints used during estimation (passed through from the Arguments)
reference The reference measure used during estimation (passed through from the Argu-

ments)
estimate The estimation method used (passed through from the Arguments).
offset vector of logical telling which model parameters are to be set at a fixed value

(i.e., not estimated).
drop If control$drop=TRUE, a numeric vector indicating which terms were dropped

due to to extreme values of the corresponding statistics on the observed network,
and how:
0 The term was not dropped.
-1 The term was at its minimum and the coefficient was fixed at -Inf.
+1 The term was at its maximum and the coefficient was fixed at +Inf.

estimable A logical vector indicating which terms could not be estimated due to a constraints
constraint fixing that term at a constant value.

info A list with miscellaneous information that would typically be accessed by the
user via methods; in general, it should not be accessed directly. Current elements
include:
terms_dind Logical indicator of whether the model terms are all dyad-independent.
space_dind Logical indicator of whether the sample space (constraints) are all

dyad-independent.
n_info_dyads Number of “informative” dyads: those that are observed (not

missing) and not constrained by sample space constraints; one of the mea-
sures of sample size.

obs Logical indicator of whether an observational (missing data) process was
involved in estimation.

valued Logical indicator of whether the model is valued.
null.lik Log-likelihood of the null model. Valid only for unconstrained models.
mle.lik The approximate log-likelihood for the MLE. The value is only approximate

because it is estimated based on the MCMC random sample.

Methods (by generic)

• is.na(ergm): Return TRUE if the ERGM was fit to a partially observed network and/or an
observational process, such as missing (NA) dyads.

• anyNA(ergm): Alias to the is.na() method.
• nobs(ergm): Return the number of informative dyads of a model fit.
• print(ergm): Print the call, the estimate, and the method used to obtain it.
• vcov(ergm): extracts the variance-covariance matrix of parameter estimates.

98 ergm

Notes on model specification

Although each of the statistics in a given model is a summary statistic for the entire network, it
is rarely necessary to calculate statistics for an entire network in a proposed Metropolis-Hastings
step. Thus, for example, if the triangle term is included in the model, a census of all triangles in the
observed network is never taken; instead, only the change in the number of triangles is recorded for
each edge toggle.

In the implementation of ergm(), the model is initialized in R, then all the model information is
passed to a C program that generates the sample of network statistics using MCMC. This sam-
ple is then returned to R, which then uses one of several algorithms, selected by main.method=
control.ergm() parameter to update the estimate.

The mechanism for proposing new networks for the MCMC sampling scheme, which is a Metropolis-
Hastings algorithm, depends on two things: The constraints, which define the set of possible
networks that could be proposed in a particular Markov chain step, and the weights placed on these
possible steps by the proposal distribution. The former may be controlled using the constraints
argument described above. The latter may be controlled using the prop.weights argument to the
control.ergm() function.

The package is designed so that the user could conceivably add additional proposal types.

References

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008). “ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks.” Journal of Statistical Software,
24(3), 1–29. doi:10.18637/jss.v024.i03.

Krivitsky PN, Hunter DR, Morris M, Klumb C (2023). “ergm 4: New Features for Analyz-
ing Exponential-Family Random Graph Models.” Journal of Statistical Software, 105(6), 1–44.
doi:10.18637/jss.v105.i06.

Admiraal R, Handcock MS (2007). networksis: Simulate bipartite graphs with fixed marginals
through sequential importance sampling. Statnet Project, Seattle, WA. Version 1. https://statnet.
org.

Bender-deMoll S, Morris M, Moody J (2008). Prototype Packages for Managing and Animating
Longitudinal Network Data: dynamicnetwork and rSoNIA. Journal of Statistical Software, 24(7).
doi:10.18637/jss.v024.i07

Butts CT (2007). sna: Tools for Social Network Analysis. R package version 2.3-2. https:
//cran.r-project.org/package=sna.

Butts CT (2008). network: A Package for Managing Relational Data in R. Journal of Statistical
Software, 24(2). doi:10.18637/jss.v024.i02

Butts C (2015). network: The Statnet Project (https://statnet.org). R package version 1.12.0,
https://cran.r-project.org/package=network.

Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial. Journal
of Statistical Software, 24(8). doi:10.18637/jss.v024.i08

Goodreau SM, Kitts J, Morris M (2008b). Birds of a Feather, or Friend of a Friend? Using Ex-
ponential Random Graph Models to Investigate Adolescent Social Networks. Demography, 45, in
press.

https://doi.org/10.18637/jss.v024.i03
https://doi.org/10.18637/jss.v105.i06
https://CRAN.R-project.org/package=networksis
https://statnet.org
https://statnet.org
https://doi.org/10.18637/jss.v024.i07
https://CRAN.R-project.org/package=sna
https://cran.r-project.org/package=sna
https://cran.r-project.org/package=sna
https://CRAN.R-project.org/package=network
https://doi.org/10.18637/jss.v024.i02
https://CRAN.R-project.org/package=network
https://cran.r-project.org/package=network
https://CRAN.R-project.org/package=statnet
https://doi.org/10.18637/jss.v024.i08

ergm 99

Handcock, M. S. (2003) Assessing Degeneracy in Statistical Models of Social Networks, Working
Paper #39, Center for Statistics and the Social Sciences, University of Washington. https://csss.
uw.edu/research/working-papers/assessing-degeneracy-statistical-models-social-networks

Handcock MS (2003b). degreenet: Models for Skewed Count Distributions Relevant to Networks.
Statnet Project, Seattle, WA. Version 1.0, https://statnet.org.

Handcock MS and Gile KJ (2010). Modeling Social Networks from Sampled Data. Annals of
Applied Statistics, 4(1), 5-25. doi:10.1214/08AOAS221

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003a). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Statnet Project, Seattle, WA.
Version 2, https://statnet.org.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003b). statnet: Software Tools
for the Statistical Modeling of Network Data. Statnet Project, Seattle, WA. Version 2, https:
//statnet.org.

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software,
24(3). doi:10.18637/jss.v024.i03

Karwa V, Krivitsky PN, and Slavkovi\’c AB (2017). Sharing Social Network Data: Differentially
Private Estimation of Exponential-Family Random Graph Models. Journal of the Royal Statistical
Society, Series C, 66(3):481–500. doi:10.1111/rssc.12185

Krivitsky PN (2012). Exponential-Family Random Graph Models for Valued Networks. Electronic
Journal of Statistics, 2012, 6, 1100-1128. doi:10.1214/12EJS696

Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph
Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4). doi:10.18637/
jss.v024.i04

Snijders, T.A.B. (2002), Markov Chain Monte Carlo Estimation of Exponential Random Graph
Models. Journal of Social Structure. Available from https://www.cmu.edu/joss/content/
articles/volume3/Snijders.pdf.

See Also

network, %v%, %n%, ergmTerm, ergmMPLE, summary.ergm()

Examples

#
load the Florentine marriage data matrix
#
data(flo)
#
attach the sociomatrix for the Florentine marriage data
This is not yet a network object.
#
flo
#
Create a network object out of the adjacency matrix

https://csss.uw.edu/research/working-papers/assessing-degeneracy-statistical-models-social-networks
https://csss.uw.edu/research/working-papers/assessing-degeneracy-statistical-models-social-networks
https://CRAN.R-project.org/package=degreenet
https://statnet.org
https://doi.org/10.1214/08-AOAS221
https://CRAN.R-project.org/package=ergm
https://statnet.org
https://CRAN.R-project.org/package=statnet
https://statnet.org
https://statnet.org
https://CRAN.R-project.org/package=ergm
https://doi.org/10.18637/jss.v024.i03
https://doi.org/10.1111/rssc.12185
https://doi.org/10.1214/12-EJS696
https://doi.org/10.18637/jss.v024.i04
https://doi.org/10.18637/jss.v024.i04
https://www.cmu.edu/joss/content/articles/volume3/Snijders.pdf
https://www.cmu.edu/joss/content/articles/volume3/Snijders.pdf

100 ergm

#
flomarriage <- network(flo,directed=FALSE)
flomarriage
#
print out the sociomatrix for the Florentine marriage data
#
flomarriage[,]
#
create a vector indicating the wealth of each family (in thousands of lira)
and add it as a covariate to the network object
#
flomarriage %v% "wealth" <- c(10,36,27,146,55,44,20,8,42,103,48,49,10,48,32,3)
flomarriage
#
create a plot of the social network
#
plot(flomarriage)
#
now make the vertex size proportional to their wealth
#
plot(flomarriage, vertex.cex=flomarriage %v% "wealth" / 20, main="Marriage Ties")
#
Use 'data(package = "ergm")' to list the data sets in a
#
data(package="ergm")
#
Load a network object of the Florentine data
#
data(florentine)
#
Fit a model where the propensity to form ties between
families depends on the absolute difference in wealth
#
gest <- ergm(flomarriage ~ edges + absdiff("wealth"))
summary(gest)
#
add terms for the propensity to form 2-stars and triangles
of families
#
gest <- ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle)
summary(gest)

import synthetic network that looks like a molecule
data(molecule)
Add a attribute to it to mimic the atomic type
molecule %v% "atomic type" <- c(1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3)
#
create a plot of the social network
colored by atomic type
#
plot(molecule, vertex.col="atomic type",vertex.cex=3)

measure tendency to match within each atomic type

ergm-options 101

gest <- ergm(molecule ~ edges + kstar(2) + triangle + nodematch("atomic type"))
summary(gest)

compare it to differential homophily by atomic type
gest <- ergm(molecule ~ edges + kstar(2) + triangle

+ nodematch("atomic type",diff=TRUE))
summary(gest)

Extract parameter estimates as a numeric vector:
coef(gest)
Sources of variation in parameter estimates:
vcov(gest, sources="model")
vcov(gest, sources="estimation")
vcov(gest, sources="all") # the default

ergm-options Global options and term options for the ergm package

Description

Options set via the built-in options() functions that affect ergm estimation and options that control
the behavior of some terms.

Global options and defaults

ergm.eval.loglik = TRUE Whether ergm() and similar functions will evaluate the likelihood of
the fitted model. Can be overridden for a specific call by passing eval.loglik argument
directly.

ergm.loglik.warn_dyads = TRUE Whether log-likelihood evaluation should issue a warning when
the effective number of dyads that can vary in the sample space is poorly defined, such as if
the degree sequence is constrained.

ergm.cluster.retries = 5 ergm’s parallel routines implement rudimentary fault-tolerance. This
option controls the number of retries for a cluster call before giving up.

ergm.term = list() The default term options below.

Term options

Term options can be set in three places, in the order of precedence from high to low:

1. As a term argument (not always). For example, gw.cutoff below can be set in a gwesp term
by gwesp(..., cutoff=X).

2. For functions such as summary that take ergm formulas but do not take a control list, the named
arguments passed in as E.g, summary(nw~gwesp(.5,fix=TRUE), gw.cutoff=60) will
evaluate the GWESP statistic with its cutoff set to 60.

https://CRAN.R-project.org/package=ergm

102 ergm-parallel

3. As an element in a term.options= list passed via a control function such as control.ergm()
or, for functions that do not, in a list with that argument name. E.g., summary(nw~gwesp(.5,fix=TRUE),
term.options=list(gw.cutoff=60)) has the same effect.

4. As an element in a global option list ergm.term above.

The following options are in use by terms in the ergm package:

version A string that can be interpreted as an R package version. If set, the term will attempt to
emulate its behavior as it was that version of ergm. Not all past version behaviors are available.

gw.cutoff In geometrically weighted terms (gwesp, gwdegree, etc.) the highest number of shared
partners, degrees, etc. for which to compute the statistic. This usually defaults to 30.

cache.sp Whether the gwesp, dgwesp, and similar terms need should use a cache for the dyad-
wise number of shared partners. This usually improves performance significantly at a modest
memory cost, and therefore defaults to TRUE, but it can be disabled.

interact.dependent Whether to allow and how to handle the user attempting to interact dyad-
dependent terms (e.g., absdiff("age"):triangles or absdiff("age")*triangles as op-
posed to absdiff("age"):nodefactor("sex")). Possible values are "error" (the default),
"message", and "warning", for their respective actions, and "silent" for simply processing
the term.

ergm-parallel Parallel Processing in the ergm Package

Description

Using clusters multiple CPUs or CPU cores to speed up ERGM estimation and simulation.

The ergm.getCluster function is usually called internally by the ergm process (in ergm_MCMC_sample())
and will attempt to start the appropriate type of cluster indicated by the control.ergm() settings.
It will also check that the same version of ergm is installed on each node.

The ergm.stopCluster shuts down a cluster, but only if ergm.getCluster was responsible for
starting it.

The ergm.restartCluster restarts and returns a cluster, but only if ergm.getCluster was re-
sponsible for starting it.

nthreads is a simple generic to obtain the number of parallel processes represented by its argument,
keeping in mind that having no cluster (e.g., NULL) represents one thread.

Usage

ergm.getCluster(control = NULL, verbose = FALSE, stop_on_exit = parent.frame())

ergm.stopCluster(..., verbose = FALSE)

ergm.restartCluster(control = NULL, verbose = FALSE)

set.MT_terms(n)

ergm-parallel 103

get.MT_terms()

nthreads(clinfo = NULL, ...)

S3 method for class 'cluster'
nthreads(clinfo = NULL, ...)

S3 method for class '`NULL`'
nthreads(clinfo = NULL, ...)

S3 method for class 'control.list'
nthreads(clinfo = NULL, ...)

Arguments

control a control.ergm() (or similar) list of parameter values from which the parallel
settings should be read; can also be NULL, in which case an existing cluster is
used if started, or no cluster otherwise.

verbose A logical or an integer to control the amount of progress and diagnostic in-
formation to be printed. FALSE/0 produces minimal output, with higher values
producing more detail. Note that very high values (5+) may significantly slow
down processing.

stop_on_exit An environment or NULL. If an environment, defaulting to that of the calling
function, the cluster will be stopped when the calling the frame in question exits.

... not currently used
n an integer specifying the number of threads to use; 0 (the starting value) disables

multithreading, and −1 or NA sets it to the number of CPUs detected.
clinfo a cluster or another object.

Details

For estimation that require MCMC, ergm can take advantage of multiple CPUs or CPU cores on the
system on which it runs, as well as computing clusters through one of two mechanisms:

Running MCMC chains in parallel Packages parallel and snow are used to to facilitate this, all
cluster types that they support are supported.
The number of nodes used and the parallel API are controlled using the parallel and parallel.type
arguments passed to the control functions, such as control.ergm().
The ergm.getCluster() function is usually called internally by the ergm process (in ergm_MCMC_sample())
and will attempt to start the appropriate type of cluster indicated by the control.ergm() set-
tings. The ergm.stopCluster() is helpful if the user has directly created a cluster.
Further details on the various cluster types are included below.

Multithreaded evaluation of model terms Rather than running multiple MCMC chains, it is pos-
sible to attempt to accelerate sampling by evaluating qualified terms’ change statistics in mul-
tiple threads run in parallel. This is done using the OpenMP API.
However, this introduces a nontrivial amont of computational overhead. See below for a list
of the major factors affecting whether it is worthwhile.

https://www.openmp.org/

104 ergm-parallel

Generally, the two approaches should not be used at the same time without caution. In particular, by
default, cluster slave nodes will not “inherit” the multithreading setting; but parallel.inherit.MT=
control parameter can override that. Their relative advantages and disadvantages are as follows:

• Multithreading terms cannot take advantage of clusters but only of CPUs and cores.

• Parallel MCMC chains produce several independent chains; multithreading still only produces
one.

• Multithreading terms actually accellerates sampling, including the burn-in phase; parallel
MCMC’s multiple burn-in runs are effectively “wasted”.

Value

set.MT_terms() returns the previous setting, invisibly.

get.MT_terms() returns the current setting.

Different types of clusters

PSOCK clusters The parallel package is used with PSOCK clusters by default, to utilize mul-
tiple cores on a system. The number of cores on a system can be determined with the
detectCores() function.
This method works with the base installation of R on all platforms, and does not require
additional software.
For more advanced applications, such as clusters that span multiple machines on a network,
the clusters can be initialized manually, and passed into ergm() and others using the parallel
control argument. See the second example below.

MPI clusters To use MPI to accelerate ERGM sampling, pass the control parameter parallel.type="MPI".
ergm requires the snow and Rmpi packages to communicate with an MPI cluster.
Using MPI clusters requires the system to have an existing MPI installation. See the MPI
documentation for your particular platform for instructions.
To use ergm() across multiple machines in a high performance computing environment, see
the section "User initiated clusters" below.

User initiated clusters A cluster can be passed into ergm() with the parallel control parameter.
ergm() will detect the number of nodes in the cluster, and use all of them for MCMC sam-
pling. This method is flexible: it will accept any cluster type that is compatible with snow or
parallel packages.

When is multithreading terms worthwhile?

• The more terms with statistics the model has, the more benefit from parallel execution.

• The more expensive the terms in the model are, the more benefit from parallel execution. For
example, models with terms like gwdsp will generally get more benefit than models where all
terms are dyad-independent.

• Sampling more dense networks will generally get more benefit than sparse networks. Network
size has little, if any, effect.

• More CPUs/cores usually give greater speed-up, but only up to a point, because the amount
of overhead grows with the number of threads; it is often better to “batch” the terms into a
smaller number of threads than possible.

https://CRAN.R-project.org/package=snow
https://CRAN.R-project.org/package=Rmpi

ergm.allstats 105

• Any other workload on the system will have a more severe effect on multithreaded execution.
In particular, do not run more threads than CPUs/cores that you want to allocate to the tasks.

• Under Windows, even compiling with OpenMP appears to introduce unacceptable amounts of
overhead, so it is disabled for Windows at compile time. To enable, delete src/Makevars.win
and recompile from scratch.

Note

The this is a setting global to the ergm package and all of its C functions, including when called
from other packages via the Linking-To mechanism.

Examples

Uses 2 SOCK clusters for MCMLE estimation
data(faux.mesa.high)
nw <- faux.mesa.high
fauxmodel.01 <- ergm(nw ~ edges + isolates + gwesp(0.2, fixed=TRUE),

control=control.ergm(parallel=2, parallel.type="PSOCK"))
summary(fauxmodel.01)

ergm.allstats Calculate all possible vectors of statistics on a network for an ERGM

Description

ergm.allstats calculates the sufficient statistics of an ERGM over the network’s sample space.

ergm.exact() uses ergm.allstats() to calculate the exact loglikelihood, evaluated at eta.

Usage

ergm.allstats(formula, constraints = ~., zeroobs = TRUE, force = FALSE, ...)

ergm.exact(eta, formula, constraints = ~., statmat = NULL, weights = NULL, ...)

Arguments

formula, constraints
An ERGM formula and (optionally) a constraint specification formulas. See
ergm(). This function supports only dyad-independent constraints.

zeroobs Logical: Should the vectors be centered so that the network passed in the formula
has the zero vector as its statistics?

force Logical: Should the algorithm be run even if it is determined that the problem
may be very large, thus bypassing the warning message that normally terminates
the function in such cases?

106 ergm.allstats

... further arguments, passed to ergm_model().

eta vector of canonical parameter values at which the loglikelihood should be eval-
uated.

statmat, weights
outputs from ergm.allstats(): if passed, used in lieu of running it.

Details

The mechanism for doing this is a recursive algorithm, where the number of levels of recursion
is equal to the number of possible dyads that can be changed from 0 to 1 and back again. The
algorithm starts with the network passed in formula, then recursively toggles each edge twice so
that every possible network is visited.

ergm.allstats() and ergm.exact() should only be used for small networks, since the number
of possible networks grows extremely fast with the number of nodes. An error results if it is used
on a network with more than 31 free dyads, which corresponds to a directed network of more than
6 nodes or an undirected network of more than 8 nodes; use force=TRUE to override this error.

In case ergm.exact() is to be called repeatedly, for instance by an optimization routine, it is prefer-
able to call ergm.allstats() first, then pass statmat and weights explicitly to avoid repeatedly
calculating these objects.

Value

ergm.allstats() returns a list object with these two elements:

weights integer of counts, one for each row of statmat telling how many networks share
the corresponding vector of statistics.

statmat matrix in which each row is a unique vector of statistics.

ergm.exact() returns the exact value of the loglikelihood, evaluated at eta.

Examples

Count by brute force all the edge statistics possible for a 7-node
undirected network
mynw <- network.initialize(7, dir = FALSE)
system.time(a <- ergm.allstats(mynw~edges))

Summarize results
rbind(t(a$statmat), .freq. = a$weights)

Each value of a$weights is equal to 21-choose-k,
where k is the corresponding statistic (and 21 is
the number of dyads in an 7-node undirected network).
Here's a check of that fact:
as.vector(a$weights - choose(21, t(a$statmat)))

Dyad-independent constraints are also supported:
system.time(a <- ergm.allstats(mynw~edges, constraints = ~fixallbut(cbind(1:2,2:3))))
rbind(t(a$statmat), .freq. = a$weights)

ergm.bridge.llr 107

Simple ergm.exact output for this network.
We know that the loglikelihood for my empty 7-node network
should simply be -21*log(1+exp(eta)), so we may check that
the following two values agree:
-21*log(1+exp(.1234))
ergm.exact(.1234, mynw~edges, statmat=a$statmat, weights=a$weights)

ergm.bridge.llr Bridge sampling to evaluate ERGM log-likelihoods and log-likelihood
ratios

Description

ergm.bridge.llr uses bridge sampling with geometric spacing to estimate the difference between
the log-likelihoods of two parameter vectors for an ERGM via repeated calls to simulate.formula.ergm().

ergm.bridge.0.llk is a convenience wrapper that returns the log-likelihood of configuration θ
relative to the reference measure. That is, the configuration with θ = 0 is defined as having log-
likelihood of 0.

ergm.bridge.dindstart.llk is a wrapper that uses a dyad-independent ERGM as a starting point
for bridge sampling to estimate the log-likelihood for a given dyad-dependent model and parameter
configuration. Note that it only handles binary ERGMs (response=NULL) and with constraints
(constraints=) that that do not induce dyadic dependence.

Usage

ergm.bridge.llr(
object,
response = NULL,
reference = ~Bernoulli,
constraints = ~.,
from,
to,
obs.constraints = ~. - observed,
target.stats = NULL,
basis = ergm.getnetwork(object),
verbose = FALSE,
...,
llronly = FALSE,
control = control.ergm.bridge()

)

ergm.bridge.0.llk(
object,
response = NULL,
reference = ~Bernoulli,

108 ergm.bridge.llr

coef,
...,
llkonly = TRUE,
control = control.ergm.bridge(),
basis = ergm.getnetwork(object)

)

ergm.bridge.dindstart.llk(
object,
response = NULL,
constraints = ~.,
coef,
obs.constraints = ~. - observed,
target.stats = NULL,
dind = NULL,
coef.dind = NULL,
basis = ergm.getnetwork(object),
...,
llkonly = TRUE,
control = control.ergm.bridge(),
verbose = FALSE

)

Arguments

object A model formula. See ergm() for details.

response Either a character string, a formula, or NULL (the default), to specify the response
attributes and whether the ERGM is binary or valued. Interpreted as follows:

NULL Model simple presence or absence, via a binary ERGM.
character string The name of the edge attribute whose value is to be modeled.

Type of ERGM will be determined by whether the attribute is logical
(TRUE/FALSE) for binary or numeric for valued.

a formula must be of the form NAME~EXPR|TYPE (with | being literal). EXPR is
evaluated in the formula’s environment with the network’s edge attributes
accessible as variables. The optional NAME specifies the name of the edge
attribute into which the results should be stored, with the default being a
concise version of EXPR. Normally, the type of ERGM is determined by
whether the result of evaluating EXPR is logical or numeric, but the optional
TYPE can be used to override by specifying a scalar of the type involved
(e.g., TRUE for binary and 1 for valued).

reference A one-sided formula specifying the reference measure (h(y)) to be used. (De-
faults to ~Bernoulli.)

constraints, obs.constraints
One-sided formulas specifying one or more constraints on the support of the
distribution of the networks being simulated and on the observation process re-
spectively. See the documentation for similar arguments for ergm() for more
information.

ergm.bridge.llr 109

from, to The initial and final parameter vectors.
target.stats A vector of sufficient statistics to be used in place of those of the network in the

formula.
basis An optional network object to start the Markov chain. If omitted, the default is

the left-hand-side of the object.
verbose A logical or an integer to control the amount of progress and diagnostic in-

formation to be printed. FALSE/0 produces minimal output, with higher values
producing more detail. Note that very high values (5+) may significantly slow
down processing.

... Further arguments to ergm.bridge.llr and simulate.formula.ergm().
llronly Logical: If TRUE, only the estiamted log-ratio will be returned by ergm.bridge.llr.
control A list of control parameters for algorithm tuning, typically constructed with

control.ergm.bridge(). Its documentation gives the the list of recognized
control parameters and their meaning. The more generic utility snctrl() (Stat-
Net ConTRoL) also provides argument completion for the available control
functions and limited argument name checking.

coef A vector of coefficients for the configuration of interest.
llkonly Whether only the estiamted log-likelihood should be returned by the ergm.bridge.0.llk

and ergm.bridge.dindstart.llk. (Defaults to TRUE.)
dind A one-sided formula with the dyad-independent model to use as a starting point.

Defaults to the dyad-independent terms found in the formula object with an
overal density term (edges) added if not redundant.

coef.dind Parameter configuration for the dyad-independent starting point. Defaults to the
MLE of dind.

Value

If llronly=TRUE or llkonly=TRUE, these functions return the scalar log-likelihood-ratio or the
log-likelihood. Otherwise, they return a list with the following components:

llr The estimated log-ratio.
llr.vcov The estimated variance of the log-ratio due to MCMC approximation.
llrs A list of lists (1 per attempt) of the estimated log-ratios for each of the bridge.nsteps

bridges.
llrs.vcov A list of lists (1 per attempt) of the estimated variances of the estimated log-

ratios for each of the bridge.nsteps bridges.
paths A list of lists (1 per attempt) with two elements: theta, a numeric matrix with

bridge.nsteps rows, with each row being the respective bridge’s parameter
configuration; and weight, a vector of length bridge.nsteps containing its
weight.

Dtheta.Du The gradient vector of the parameter values with respect to position of the
bridge.

ergm.bridge.0.llk result list also includes an llk element, with the log-likelihood itself (with
the reference distribution assumed to have likelihood 0).

ergm.bridge.dindstart.llk result list also includes an llk element, with the log-likelihood itself
and an llk.dind element, with the log-likelihood of the nearest dyad-independent model.

110 ergm.getnetwork

References

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics.

See Also

simulate.formula.ergm()

ergm.design Obtain the set of informative dyads based on the network structure.

Description

Note that this function is not recommended for general use, since it only supports only one way of
specifying observational structure—through NA edges. It is likely to be deprecated in the future.

Usage

ergm.design(nw, ...)

Arguments

nw a network object.

... term options.

Value

ergm.design returns a rlebdm of informative (non-missing, non fixed) dyads.

ergm.getnetwork Acquire and verify the network from the LHS of an ergm formula and
verify that it is a valid network.

Description

The function function ensures that the network in a given formula is valid; if so, the network is
returned; if not, execution is halted with warnings.

Usage

ergm.getnetwork(formula, loopswarning = TRUE)

ergm.godfather 111

Arguments

formula a two-sided formula whose LHS is a network, an object that can be coerced to
a network, or an expression that evaluates to one.

loopswarning whether warnings about loops should be printed (TRUE or FALSE); defaults to
TRUE.

Value

A network object constructed by evaluating the LHS of the model formula in the formula’s envi-
ronment.

ergm.godfather A function to apply a given series of changes to a network.

Description

Gives the network a series of proposals it can’t refuse. Returns the statistics of the network, and,
optionally, the final network.

Usage

ergm.godfather(
object,
changes = NULL,
...,
end.network = FALSE,
stats.start = FALSE,
changes.only = FALSE,
verbose = FALSE,
basis = NULL,
formula = NULL

)

S3 method for class 'formula'
ergm.godfather(
object,
changes = NULL,
response = NULL,
...,
end.network = FALSE,
stats.start = FALSE,
changes.only = FALSE,
verbose = FALSE,
control = NULL,
basis = ergm.getnetwork(object)

)

112 ergm.godfather

S3 method for class 'ergm_model'
ergm.godfather(
object,
changes = NULL,
...,
end.network = FALSE,
stats.start = FALSE,
changes.only = FALSE,
verbose = FALSE,
control = NULL,
basis = NULL

)

S3 method for class 'ergm_state'
ergm.godfather(
object,
changes = NULL,
...,
end.network = FALSE,
stats.start = FALSE,
verbose = FALSE,
control = NULL

)

Arguments

object An ergm()-style formula, with a network on its LHS, an ergm_model() or the
object appropriate to the method.

changes Either a matrix with three columns: tail, head, and new value, describing the
changes to be made; or a list of such matrices to apply these changes in a se-
quence. For binary network models, the third column may be omitted. In that
case, the changes are treated as toggles. Note that if a list is passed, it must
either be all of changes or all of toggles.

... additional arguments to ergm_model().

end.network Whether to return a network that results. Defaults to FALSE.

stats.start Whether to return the network statistics at start (before any changes are ap-
plied) as the first row of the statistics matrix. Defaults to FALSE, to produce
output similar to that of simulate for ERGMs when output="stats", where
initial network’s statistics are not returned.

changes.only Whether to return network statistics or only their changes relative to the initial
network.

verbose A logical or an integer to control the amount of progress and diagnostic in-
formation to be printed. FALSE/0 produces minimal output, with higher values
producing more detail. Note that very high values (5+) may significantly slow
down processing.

basis a value (usually a network) to override the LHS of the formula.

ergm.godfather 113

formula Deprecated; replaced with object for consistency.

response Either a character string, a formula, or NULL (the default), to specify the response
attributes and whether the ERGM is binary or valued. Interpreted as follows:

NULL Model simple presence or absence, via a binary ERGM.
character string The name of the edge attribute whose value is to be modeled.

Type of ERGM will be determined by whether the attribute is logical
(TRUE/FALSE) for binary or numeric for valued.

a formula must be of the form NAME~EXPR|TYPE (with | being literal). EXPR is
evaluated in the formula’s environment with the network’s edge attributes
accessible as variables. The optional NAME specifies the name of the edge
attribute into which the results should be stored, with the default being a
concise version of EXPR. Normally, the type of ERGM is determined by
whether the result of evaluating EXPR is logical or numeric, but the optional
TYPE can be used to override by specifying a scalar of the type involved
(e.g., TRUE for binary and 1 for valued).

control Deprecated; arguments such as term.options can be passed directly.

Value

If end.network==FALSE (the default), an mcmc object with the requested network statistics associed
with the network series produced by applying the specified changes. Its mcmc attributes encode the
timing information: so start(out) gives the time point associated with the first row returned, and
end(out) out the last. The "thinning interval" is always 1.

If end.network==TRUE, return a network object, representing the final network, with a matrix of
statistics described in the previous paragraph attached to it as an attr-style attribute "stats".

Note

ergm.godfather.ergm_model() is a lower-level interface, providing an ergm.godfather() method
for the ergm_model class. The basis argument is required.

ergm.godfather.ergm_model() is a lower-level interface, providing an ergm.godfather() method
for the ergm_model class. The basis argument is required.

See Also

tergm.godfather() in tergm, simulate.ergm(), simulate.formula()

Examples

data(florentine)
ergm.godfather(flomarriage~edges+absdiff("wealth")+triangles,

changes=list(cbind(1:2,2:3),
cbind(3,5),
cbind(3,5),
cbind(1:2,2:3)),

stats.start=TRUE)

https://CRAN.R-project.org/package=tergm

114 ergmConstraint

ergmConstraint Sample Space Constraints for Exponential-Family Random Graph
Models

Description

This page describes how to specify the constraints on the network sample space (the set of possible
networks Y , the set of networks y for which h(y) > 0) and sometimes the baseline weights h(y) to
functions in the ergm package. It also provides an indexed list of the constraints visible to the ergm’s
API. Constraints can also be searched via search.ergmConstraints, and help for an individual
constraint can be obtained with ergmConstraint?<constraint> or help("<constraint>-ergmConstraint").

Specifying constraints

In an exponential-family random graph model (ERGM), the probability or density of a given net-
work, y ∈ Y , on a set of nodes is

h(y) exp[η(θ) · g(y)]/κ(θ),

where h(y) is the reference distribution (particularly for valued network models), g(y) is a vector
of network statistics for y, η(θ) is a natural parameter vector of the same length (with η(θ) ≡ θ
for most terms), · is the dot product, and κ(θ) is the normalizing constant for the distribution. A
complete ERGM specification requires a list of network statistics g(y) and (if applicable) their
η(θ) mappings provided by a formula of ergmTerms; and, optionally, sample space Y and ref-
erence distribution h(y) information provided by ergmConstraints and, for valued ERGMs, by
ergmReferences. Constraints typically affect Y , or, equivalently, set h(y) = 0 for some y, but
some (“soft” constraints) set h(y) to values other than 0 and 1.

A constraints formula is a one- or two-sided formula whose left-hand side is an optional direct
selection of the InitErgmProposal function and whose right-hand side is a series of one or more
terms separated by "+" and "-" operators, specifying the constraint.

The sample space (over and above the reference distribution) is determined by iterating over the
constraints terms from left to right, each term updating it as follows:

• If the constraint introduces complex dependence structure (e.g., constrains degree or number
of edges in the network), then this constraint always restricts the sample space. It may only
have a "+" sign.

• If the constraint only restricts the set of dyads that may vary in the sample space (e.g., block-
diagonal structure or fixing specific dyads at specific values) and has a "+" sign, the set of
dyads that may vary is restricted to those that may vary according to this constraint and all the
constraints to date.

• If the constraint only restricts the set of dyads that may vary in the sample space but has a
"-" sign, the set of dyads that may vary is expanded to those that may vary according to this
constraint or all the constraints up to date.

For example, a constraints formula ~a-b+c-d with all constraints dyadic will allow dyads permitted
by either a or b but only if they are also permitted by c; as well as all dyads permitted by d. If A, B,
C, and D were logical matrices, the matrix of variable dyads would be equal to ((A|B)&C)|D.

https://CRAN.R-project.org/package=ergm

ergmConstraint 115

Terms with a positive sign can be viewed as "adding" a constraint while those with a negative sign
can be viewed as "relaxing" a constraint.

Inheriting constraints from LHS network:
By default, %ergmlhs% attributes constraints or constraints.obs (depending on which con-
straint) attached to the LHS of the model formula or the basis= argument will be added in front
of the specified constraints formula. This is the desired behaviour most of the time, since those
constraints are usually determined by how the network was constructed (e.g., structural zeros in a
block-diagonal network).
For those situations in which this is not the desired behavior, a . term (with a positive sign or no
sign at all) can be used to manually set the position of the inherited constraints in the formula,
and a -. (minus-dot) term anywhere in the constraints formula will suppress the inherited formula
altogether.

Constraints visible to the package

Term Package Description Concepts
Dyads(fix=NULL,
vary=NULL)

ergm Constrain fixed or varying dyad-independent terms directed
dyad-
independent
operator
undi-
rected

b1degrees ergm Preserve the actor degree for bipartite networks bipartite
b2degrees ergm Preserve the receiver degree for bipartite networks bipartite
bd(attribs, maxout,
maxin, minout, minin)

ergm Constrain maximum and minimum vertex degree directed
undi-
rected

blockdiag(attr) ergm Block-diagonal structure constraint directed
dyad-
independent
undi-
rected

blocks(attr=NULL,
levels=NULL,
levels2=FALSE,
b1levels=NULL,
b2levels=NULL)

ergm Constrain blocks of dyads defined by mixing type
on a vertex attribute.

directed
dyad-
independent
undi-
rected

degreedist ergm Preserve the degree distribution of the given net-
work

directed
undi-
rected

degrees
nodedegrees

ergm Preserve the degree of each vertex of the given net-
work

directed
undi-
rected

116 ergmConstraint

dyadnoise(p01, p10) ergm A soft constraint to adjust the sampled distribution
for dyad-level noise with known perturbation prob-
abilities

directed
dyad-
independent
soft undi-
rected

edges ergm Preserve the edge count of the given network
egocentric(attr=NULL,
direction="both")

ergm Preserve values of dyads incident on vertices with
given attribute

directed
dyad-
independent
undi-
rected

fixallbut(free.dyads) ergm Preserve the dyad status in all but the given edges directed
dyad-
independent
undi-
rected

fixedas(fixed.dyads,
present, absent)

ergm Fix specific dyads directed
dyad-
independent
undi-
rected

hamming ergm Preserve the hamming distance to the given network
(BROKEN: Do NOT Use)

directed
undi-
rected

idegreedist ergm Preserve the indegree distribution directed
idegrees ergm Preserve indegree for directed networks directed
observed ergm Preserve the observed dyads of the given network directed

dyad-
independent
undi-
rected

odegreedist ergm Preserve the outdegree distribution directed
odegrees ergm Preserve outdegree for directed networks directed

All constraints:

Term dir dyad-
indep

op undir bip soft

Dyads o o o o
b1degrees o
b2degrees o
bd o o
blockdiag o o o
blocks o o o
degreedist o o
degrees o o

ergmConstraint 117

dyadnoise o o o o
edges
egocentric o o o
fixallbut o o o
fixedas o o o
hamming o o
idegreedist o
idegrees o
observed o o o
odegreedist o
odegrees o

Constraints by keywords:

directed Dyads, bd, blockdiag, blocks, degreedist, degrees, dyadnoise, egocentric, fixallbut,
fixedas, hamming, idegreedist, idegrees, observed, odegreedist, odegrees

dyad-independent Dyads, blockdiag, blocks, dyadnoise, egocentric, fixallbut, fixedas, observed

operator Dyads

undirected Dyads, bd, blockdiag, blocks, degreedist, degrees, dyadnoise, egocentric, fixallbut,
fixedas, hamming, observed

bipartite b1degrees, b2degrees

soft dyadnoise

References

• Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial.
Journal of Statistical Software, 24(8). doi:10.18637/jss.v024.i08

• Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for
networks, Journal of Computational and Graphical Statistics.

• Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to
Fit, Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical
Software, 24(3). doi:10.18637/jss.v024.i03

• Karwa V, Krivitsky PN, and Slavkovi\’c AB (2016). Sharing Social Network Data: Differen-
tially Private Estimation of Exponential-Family Random Graph Models. Journal of the Royal
Statistical Society, Series C, 66(3): 481-500. doi:10.1111/rssc.12185

• Krivitsky PN (2012). Exponential-Family Random Graph Models for Valued Networks. Elec-
tronic Journal of Statistics, 6, 1100-1128. doi:10.1214/12EJS696

• Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random
Graph Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4).
doi:10.18637/jss.v024.i04

https://CRAN.R-project.org/package=statnet
https://doi.org/10.18637/jss.v024.i08
https://CRAN.R-project.org/package=ergm
https://doi.org/10.18637/jss.v024.i03
https://doi.org/10.1111/rssc.12185
https://doi.org/10.1214/12-EJS696
https://doi.org/10.18637/jss.v024.i04

118 ergmHint

ergmHint MCMC Hints for Exponential-Family Random Graph Models

Description

This page describes how to provide to the ergm’s MCMC algorithms information about the sample
space. Hints can also be searched via search.ergmHints, and help for an individual hint can be
obtained with ergmHint?<hint> or help("<hint>-ergmHint").

“Hints” for MCMC

In an exponential-family random graph model (ERGM), the probability or density of a given net-
work, y ∈ Y , on a set of nodes is

h(y) exp[η(θ) · g(y)]/κ(θ),

where h(y) is the reference distribution (particularly for valued network models), g(y) is a vector
of network statistics for y, η(θ) is a natural parameter vector of the same length (with η(θ) ≡ θ
for most terms), · is the dot product, and κ(θ) is the normalizing constant for the distribution. A
complete ERGM specification requires a list of network statistics g(y) and (if applicable) their
η(θ) mappings provided by a formula of ergmTerms; and, optionally, sample space Y and ref-
erence distribution h(y) information provided by ergmConstraints and, for valued ERGMs, by
ergmReferences.

It is often the case that there is additional information available about the distribution of net-
works being modelled. For example, you may be aware that the network is sparse or that there
are strata among the dyads. “Hints”, typically passed on the right-hand side of MCMC.prop and
obs.MCMC.prop arguments to control.ergm(), control.simulate.ergm(), and others, allow
this information to be provided. By default, hint sparse is in effect.

Unlike constraints, model terms, and reference distributions, “hints” do not affect the specification
of the model. That is, regardless of what “hints” may or may not be in effect, the sample space
and the probabilities within it are the same. However, “hints” may affect the MCMC proposal
distribution used by the samplers.

Note that not all proposals support all “hints”: and if the most suitable proposal available cannot
incorporate a particular “hint”, a warning message will be printed.

“Hints” use the same underlying API as constraints, and, if present, %ergmlhs% attributes constraints
and constraints.obs will be substituted in its place.

Hints available to the package

The following hints are known to ergm at this time:

Term Package Description Concepts
sparse ergm Sparse network dyad-

independent

https://CRAN.R-project.org/package=ergm
https://CRAN.R-project.org/package=ergm

ergmKeyword 119

strat(attr=NULL,
pmat=NULL,
empirical=FALSE)

ergm Stratify Proposed Toggles by Mixing Type on a Ver-
tex Attribute

dyad-
independent

triadic(triFocus = 0.25,
type="OTP")
.triadic(triFocus = 0.25,
type = "OTP")

ergm Network with strong clustering (triad-closure) ef-
fects

References

• Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial.
Journal of Statistical Software, 24(8). doi:10.18637/jss.v024.i08

• Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for
networks, Journal of Computational and Graphical Statistics.

• Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to
Fit, Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical
Software, 24(3). doi:10.18637/jss.v024.i03

• Karwa V, Krivitsky PN, and Slavkovi\’c AB (2016). Sharing Social Network Data: Differen-
tially Private Estimation of Exponential-Family Random Graph Models. Journal of the Royal
Statistical Society, Series C, 66(3): 481-500. doi:10.1111/rssc.12185

• Krivitsky PN (2012). Exponential-Family Random Graph Models for Valued Networks. Elec-
tronic Journal of Statistics, 6, 1100-1128. doi:10.1214/12EJS696

• Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random
Graph Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4).
doi:10.18637/jss.v024.i04

ergmKeyword Keywords defined for Exponential-Family Random Graph Models

Description

This collects all defined keywords defined for the ERGM and derived packages

Possible keywords defined by the ERGM and derived packages

name short description popular package
binary bin suitable for binary ERGMs TRUE ergm
bipartite bip suitable for bipartite networks TRUE ergm
categorical
nodal at-
tribute

cat nodal
attr

involves a categorical nodal attribute FALSE ergm

https://CRAN.R-project.org/package=statnet
https://doi.org/10.18637/jss.v024.i08
https://CRAN.R-project.org/package=ergm
https://doi.org/10.18637/jss.v024.i03
https://doi.org/10.1111/rssc.12185
https://doi.org/10.1214/12-EJS696
https://doi.org/10.18637/jss.v024.i04

120 ergmMPLE

categorical
dyadic
attribute

cat dyad
attr

involves a categorical dyadic attribute FALSE ergm

categorical
triadic at-
tribute

cat triad
attr

involves a categorical triadic attribute FALSE ergm

continuous cont a continuous distribution for edge values FALSE ergm
curved curved is a curved term FALSE ergm
directed dir suitable for directed networks TRUE ergm
discrete discrete a discrete distribution for edge values FALSE ergm
dyad-
independent

dyad-
indep

does not induce dyadic dependence TRUE ergm

finite fin finite edge values only FALSE ergm
frequently-
used

freq is frequently used FALSE ergm

nonnegative nneg only meaningful for nonnegative edge values FALSE ergm
operator op a term operator TRUE ergm
positive pos only meaningful for positive edge values FALSE ergm
quantitative
nodal at-
tribute

quant
nodal attr

involves a quantitative nodal attribute FALSE ergm

quantitative
dyadic
attribute

quant
dyad attr

involves a quantitative dyadic attribute FALSE ergm

quantitative
triadic at-
tribute

quant
triad attr

involves a quantitative triadic attribute FALSE ergm

soft soft a constraint that does not necessarily forbid specific networks
outright but reweights their probabilities

FALSE ergm

triad-
related

triad rel involves triangles, two-paths, and other triadic structures FALSE ergm

valued val suitable for valued ERGMs TRUE ergm
undirected undir suitable for undirected networks TRUE ergm

ergmMPLE ERGM Predictors and response for logistic regression calculation of
MPLE

Description

Return the predictor matrix, response vector, and vector of weights that can be used to calculate the
MPLE for an ERGM.

ergmMPLE 121

Usage

ergmMPLE(
formula,
constraints = ~.,
obs.constraints = ~-observed,
output = c("matrix", "array", "dyadlist", "fit"),
expand.bipartite = FALSE,
control = control.ergm(),
verbose = FALSE,
...,
basis = ergm.getnetwork(formula)

)

Arguments

formula, constraints, obs.constraints
An ERGM formula and (optionally) a constraint specification formulas. See
ergm(). This function supports only dyad-independent constraints.

output Character, partially matched. See Value.
expand.bipartite

Logical. Specifies whether the output matrices (or array slices) representing
dyads for bipartite networks are represented as rectangular matrices with first
mode vertices in rows and second mode in columns, or as square matrices with
dimension equalling the total number of vertices, containing with structural NAs
or 0s within each mode.

control A list of control parameters for algorithm tuning, typically constructed with
control.ergm(). Its documentation gives the the list of recognized control pa-
rameters and their meaning. The more generic utility snctrl() (StatNet Con-
TRoL) also provides argument completion for the available control functions
and limited argument name checking.

verbose A logical or an integer to control the amount of progress and diagnostic in-
formation to be printed. FALSE/0 produces minimal output, with higher values
producing more detail. Note that very high values (5+) may significantly slow
down processing.

... Additional arguments, to be passed to lower-level functions.

basis a value (usually a network) to override the LHS of the formula.

Details

The MPLE for an ERGM is calculated by first finding the matrix of change statistics. Each row
of this matrix is associated with a particular pair (ordered or unordered, depending on whether the
network is directed or undirected) of nodes, and the row equals the change in the vector of network
statistics (as defined in formula) when that pair is toggled from a 0 (no edge) to a 1 (edge), holding
all the rest of the network fixed. The MPLE results if we perform a logistic regression in which the
predictor matrix is the matrix of change statistics and the response vector is the observed network
(i.e., each entry is either 0 or 1, depending on whether the corresponding edge exists or not).

122 ergmMPLE

Using output="matrix", note that the result of the fit may be obtained from the glm() function,
as shown in the examples below.

Value

If output=="matrix" (the default), then only the response, predictor, and weights are returned;
thus, the MPLE may be found by hand or the vector of change statistics may be used in some
other way. To save space, the algorithm will automatically search for any duplicated rows in the
predictor matrix (and corresponding response values). ergmMPLE function will return a list with
three elements, response, predictor, and weights, respectively the response vector, the predictor
matrix, and a vector of weights, which are really counts that tell how many times each corresponding
response, predictor pair is repeated.

If output=="dyadlist", as "matrix", but rather than coalescing the duplicated rows, every rela-
tion in the network that is not fixed and is observed will have its own row in predictor and element
in response and weights, and predictor matrix will have two additional rows at the start, tail
and head, indicating to which dyad the row and the corresponding elements pertain.

If output=="array", a list with similarly named three elements is returned, but response is for-
matted into a sociomatrix; predictor is a 3-dimensional array of with cell predictor[t,h,k]
containing the change score of term k for dyad (t,h); and weights is also formatted into a socioma-
trix, with an element being 1 if it is to be added into the pseudolikelihood and 0 if it is not.

In particular, for a unipartite network, cells corresponding to self-loops, i.e., predictor[i,i,k]
will be NA and weights[i,i] will be 0; and for a unipartite undirected network, lower triangle of
each predictor[,,k] matrix will be set to NA, with the lower triangle of weights being set to 0.

To all of the above output types, attr(., "etamap") is attached containing the mapping and offset
information.

If output=="fit", then ergmMPLE simply calls the ergm() function with the estimate="MPLE"
option set, returning an object of class ergm that gives the fitted pseudolikelihood model.

See Also

ergm(), glm()

Examples

data(faux.mesa.high)
formula <- faux.mesa.high ~ edges + nodematch("Sex") + nodefactor("Grade")
mplesetup <- ergmMPLE(formula)

Obtain MPLE coefficients "by hand":
coef(glm(mplesetup$response ~ . - 1, data = data.frame(mplesetup$predictor),

weights = mplesetup$weights, family="binomial"))

Check that the coefficients agree with the output of the ergm function:
coef(ergmMPLE(formula, output="fit"))

We can also format the predictor matrix into an array:
mplearray <- ergmMPLE(formula, output="array")

The resulting matrices are big, so only print the first 8 actors:

ergmProposal 123

mplearray$response[1:8,1:8]
mplearray$predictor[1:8,1:8,]
mplearray$weights[1:8,1:8]

Constraints are handled:
faux.mesa.high%v%"block" <- seq_len(network.size(faux.mesa.high)) %/% 4
mplearray <- ergmMPLE(faux.mesa.high~edges, constraints=~blockdiag("block"), output="array")
mplearray$response[1:8,1:8]
mplearray$predictor[1:8,1:8,]
mplearray$weights[1:8,1:8]

Or, a dyad list:
faux.mesa.high%v%"block" <- seq_len(network.size(faux.mesa.high)) %/% 4
mplearray <- ergmMPLE(faux.mesa.high~edges, constraints=~blockdiag("block"), output="dyadlist")
mplearray$response[1:8]
mplearray$predictor[1:8,]
mplearray$weights[1:8]

Curved terms produce predictors on the canonical scale:
formula2 <- faux.mesa.high ~ gwesp
mplearray <- ergmMPLE(formula2, output="array")
The resulting matrices are big, so only print the first 5 actors:
mplearray$response[1:5,1:5]
mplearray$predictor[1:5,1:5,1:3]
mplearray$weights[1:5,1:5]

ergmProposal Metropolis-Hastings Proposal Methods for ERGM MCMC

Description

This page describes the low-level Metropolis–Hastings (MH) proposal algorithms. They are rarely
invoked directly by the user but are rather selected based on the provided sample space constraints
and hints about the network process. They can also be searched via search.ergmProposals, and
help for an individual proposal can be obtained with ergmProposal?<proposal> or help("<proposal>-ergmProposal").

Details

ergm uses a Metropolis-Hastings (MH) algorithm to control the behavior of the Markov Chain
Monte Carlo (MCMC) for sampling networks. The MCMC chain is intended to step around the
sample space of possible networks, generating a network at regular intervals to evaluate the statistics
in the model. For each MCMC step, one or more toggles are proposed to change the dyads to
the opposite value. The probability of accepting the proposed change is determined by the MH
acceptance ratio. The role of the different MH methods implemented in ergm() is to vary how
the sets of dyads are selected for toggle proposals. This is used in some cases to improve the
performance (speed and mixing) of the algorithm, and in other cases to constrain the sample space.

124 ergmProposal

Proposals available to the package

Proposal Reference Enforces May Enforce Priority Weight Class
BDStratTNT Bernoulli sparse bdmax blocks strat -3 BDStratTNT c
BDStratTNT Bernoulli bdmax sparse blocks strat 5 BDStratTNT c
BDStratTNT Bernoulli blocks sparse bdmax strat 5 BDStratTNT c
BDStratTNT Bernoulli strat sparse bdmax blocks 5 BDStratTNT c
CondB1Degree Bernoulli b1degrees 0 random c
CondB2Degree Bernoulli b2degrees 0 random c
CondDegree Bernoulli degrees 0 random c
CondDegree Bernoulli idegrees odegrees 0 random c
CondDegree Bernoulli b1degrees b2degrees 0 random c
CondDegreeDist Bernoulli degreedist 0 random c
CondDegreeMix Bernoulli degreesmix 0 random c
CondInDegree Bernoulli idegrees 0 random c
CondInDegreeDist Bernoulli idegreedist 0 random c
CondOutDegree Bernoulli odegrees 0 random c
CondOutDegreeDist Bernoulli odegreedist 0 random c
ConstantEdges Bernoulli edges .dyads bd 0 random c
DiscUnif DiscUnif 0 random c
DiscUnif2 DiscUnif -1 random2 c
DiscUnifNonObserved DiscUnif observed 0 random c
DistRLE StdNormal .dyads 0 random c
DistRLE Unif .dyads 0 random c
DistRLE Unif .dyads -3 random c
DistRLE DiscUnif .dyads -3 random c
DistRLE StdNormal .dyads -3 random c
DistRLE Poisson .dyads -3 random c
DistRLE Binomial .dyads -3 random c
HammingConstantEdges Bernoulli edges hamming 0 random c
HammingTNT Bernoulli hamming sparse 0 random c
SPDyad Bernoulli sparse triadic .dyads bd 0 TNT c
StdNormal StdNormal 0 random c
TNT Bernoulli sparse .dyads bd 0 TNT c
Unif Unif 0 random c
UnifNonObserved Unif observed 0 random c
dyadnoise Bernoulli dyadnoise 0 random c
dyadnoiseTNT Bernoulli dyadnoise sparse 1 TNT c
randomtoggle Bernoulli .dyads bd -2 random c

Note that .dyads is a meta-constraint, indicating that the proposal supports an arbitrary dyad-level
constraint combination.

References

• Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial.
Journal of Statistical Software, 24(8). doi:10.18637/jss.v024.i08

https://CRAN.R-project.org/package=statnet
https://doi.org/10.18637/jss.v024.i08

ergmReference 125

• Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for
networks. Journal of Computational and Graphical Statistics.

• Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to
Fit, Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical
Software, 24(3). doi:10.18637/jss.v024.i03

• Krivitsky PN (2012). Exponential-Family Random Graph Models for Valued Networks. Elec-
tronic Journal of Statistics, 2012, 6, 1100-1128. doi:10.1214/12EJS696

• Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random
Graph Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4).
doi:10.18637/jss.v024.i04

See Also

ergm package, ergm, ergmConstraint, ergmHint, ergm_proposal

ergmReference Reference Measures for Exponential-Family Random Graph Models

Description

This page describes how to specify the reference measures (baseline distributions) (the set of pos-
sible networks Y and the baseline weights h(y) to functions in the ergm package. It also provides
an indexed list of the references visible to the ergm’s API. References can also be searched via
search.ergmReferences(), and help for an individual reference can be obtained with ergmReference?<reference>
or help("<reference>-ergmReference").

Specifying reference measures

In an exponential-family random graph model (ERGM), the probability or density of a given net-
work, y ∈ Y , on a set of nodes is

h(y) exp[η(θ) · g(y)]/κ(θ),

where h(y) is the reference distribution (particularly for valued network models), g(y) is a vector
of network statistics for y, η(θ) is a natural parameter vector of the same length (with η(θ) ≡ θ
for most terms), · is the dot product, and κ(θ) is the normalizing constant for the distribution. A
complete ERGM specification requires a list of network statistics g(y) and (if applicable) their
η(θ) mappings provided by a formula of ergmTerms; and, optionally, sample space Y and ref-
erence distribution h(y) information provided by ergmConstraints and, for valued ERGMs, by
ergmReferences.

The reference measure (Y, h(y)) is specified on the right-hand side of a one-sided formula passed
typically as the reference argument.

Reference measures visible to the package

https://CRAN.R-project.org/package=ergm
https://doi.org/10.18637/jss.v024.i03
https://doi.org/10.1214/12-EJS696
https://doi.org/10.18637/jss.v024.i04
https://CRAN.R-project.org/package=ergm

126 ergmTerm

Term Package Description Concepts
Bernoulli ergm Bernoulli reference discrete

finite non-
negative

DiscUnif(a,b) ergm Discrete Uniform reference discrete
finite

StdNormal ergm Standard Normal reference continuous
Unif(a,b) ergm Continuous Uniform reference continuous

All references:

Term bin discretefin nneg cont
Bernoulli o o o o
DiscUnif o o
StdNormal o
Unif o

References by keywords:

binary Bernoulli
discrete Bernoulli, DiscUnif
finite Bernoulli, DiscUnif
nonnegative Bernoulli
continuous StdNormal, Unif

References

• Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to
Fit, Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical
Software, 24(3). doi:10.18637/jss.v024.i03

• Krivitsky PN (2012). Exponential-Family Random Graph Models for Valued Networks. Elec-
tronic Journal of Statistics, 2012, 6, 1100-1128. doi:10.1214/12EJS696

See Also

ergm, network, sna, summary.ergm, print.ergm, \%v\%, \%n\%

ergmTerm Terms used in Exponential Family Random Graph Models

Description

This page explains how to specify the network statistics g(y) to functions in the ergm package and
packages that extend it. It also provides an indexed list of the possible terms (and hence network
statistics) visible to the ergm API. Terms can also be searched via search.ergmTerms, and help
for an individual term can be obtained with ergmTerm?<term> or help("<term>-ergmTerm").

https://CRAN.R-project.org/package=ergm
https://doi.org/10.18637/jss.v024.i03
https://doi.org/10.1214/12-EJS696
https://CRAN.R-project.org/package=sna
https://CRAN.R-project.org/package=ergm

ergmTerm 127

Specifying models

In an exponential-family random graph model (ERGM), the probability or density of a given net-
work, y ∈ Y , on a set of nodes is

h(y) exp[η(θ) · g(y)]/κ(θ),

where h(y) is the reference distribution (particularly for valued network models), g(y) is a vector
of network statistics for y, η(θ) is a natural parameter vector of the same length (with η(θ) ≡ θ
for most terms), · is the dot product, and κ(θ) is the normalizing constant for the distribution. A
complete ERGM specification requires a list of network statistics g(y) and (if applicable) their
η(θ) mappings provided by a formula of ergmTerms; and, optionally, sample space Y and ref-
erence distribution h(y) information provided by ergmConstraints and, for valued ERGMs, by
ergmReferences.

Network statistics g(y) and mappings η(θ) are specified by a formula object, of the form y ~ <term 1> + <term 2> ...,
where y is a network object or a matrix that can be coerced to a network object, and <term 1>,
<term 2>, etc, are each terms chosen from the list given below. To create a network object in , use
the network function, then add nodal attributes to it using the %v% operator if necessary.

Term operators:
Operator terms like B() and F() take formulas with other ergm terms as their arguments and
transform them by modifying their inputs (e.g., the network they evaluate) and/or their outputs.
By convention, their names are capitalized and CamelCased.

Interactions:
For binary ERGMs, interactions between ergm terms can be specified in a manner similar to lm
and others, as using the : and * operators. However, they must be interpreted carefully, especially
for dyad-dependent terms. (Interactions involving curved terms are not supported at this time.)
Generally, if term a has pa statistics and b has pb, a:b will add pa × pb statistics to the model,
corresponding to each element of ga(y) interacted with each element of gb(y).
The interaction is defined as follows. Dyad-independent terms can be expressed in the general
form g(y;x) =

∑
i,jxi,jyi,j for some edge covariate matrix x,

ga:b(y) =
∑
i,j

xa,i,jxb,i,jyi,j .

In other words, rather than being a product of their sufficient statistics (ga(y)gb(y)), it is a dyad-
wise product of their dyad-level effects.
This means that an interaction between two dyad-independent terms can be interpreted the same
way as it would be in the corresponding logistic regression for each potential edge. However,
for undirected networks in particular, this may lead to somewhat counterintuitive results. For
example, given two nodal covariates "a" and "b" (whose values for node i are denoted ai and bi,
respectively), nodecov("a") adds one statistic of the form

∑
i,j(ai+aj)yi,j and analogously for

nodecov("b"), so nodecov("a"):nodecov("b") produces∑
i,j

(ai + aj)(bi + bj)yi,j .

Binary and valued ERGM terms:

128 ergmTerm

ergm functions such as ergm and simulate (for ERGMs) may operate in two modes: binary
and weighted/valued, with the latter activated by passing a non-NULL value as the response
argument, giving the edge attribute name to be modeled/simulated.

Generalizations of binary terms:
Binary ERGM statistics cannot be used directly in valued mode and vice versa. However, a
substantial number of binary ERGM statistics — particularly the ones with dyadic independence
— have simple generalizations to valued ERGMs, and have been adapted in ergm. They have
the same form as their binary ERGM counterparts, with an additional argument: form, which,
at this time, has two possible values: "sum" (the default) and "nonzero". The former creates
a statistic of the form

∑
i,j xi,jyi,j , where yi,j is the value of dyad (i, j) and xi,j is the term’s

covariate associated with it. The latter computes the binary version, with the edge considered to
be present if its value is not 0. Valued version of some binary ERGM terms have an argument
threshold, which sets the value above which a dyad is conidered to have a tie. (Value less than
or equal to threshold is considered a nontie.)
The B() operator term documented below can be used to pass other binary terms to valued
models, and is more flexible, at the cost of being somewhat slower.

Nodal attribute levels and indices:
Terms taking a categorical nodal covariate also take the levels argument. (There are analo-
gous b1levels and b2levels arguments for some terms that apply to bipartite networks, and the
levels2 argument for mixing terms.) The levels argument can be used to control the set and
the ordering of attribute levels.
Terms that allow the selection of nodes do so with the nodes argument, which is interpreted in the
same way as the levels argument, where the categories are the relevant nodal indices themselves.
Both levels and nodes use the new level selection UI. (See Specifying Vertex attributes and
Levels (?
nodal_attributes) for details.)

Legacy arguments:
The legacy base and keep arguments are deprecated as of version 3.10, and replaced by the
levels UI. The levels argument provides consistent and flexible mechanisms for specifying
which attribute levels to exclude (previously handled by base) and include (previously handled
by keep). If levels or nodes argument is given, then base and keep arguments are ignored.
The legacy arguments will most likely be removed in a future version.
Note that this exact behavior is new in version 3.10, and it differs slightly from older versions:
previously if both levels and base/keep were given, levels argument was applied first and
then applied the base/keep argument. Since version 3.10, base/keep would be ignored, even if
old term behavior is invoked (as described in the next section).

Term versioning:
When a term’s behavior has changed from prior version, it is often possible to invoke the old
behavior by setting and/or passing a version term option, giving the verison (constructed by
as.package_version) desired.

Custom ergm terms:
Users and other packages may build custom terms, and package ergm.userterms (https://
github.com/statnet/ergm.userterms) provides tools for implementing them.
The current recommendation for any package implementing additional terms is to document the
term with Roxygen comments and a name in the form termName-ergmTerm. This ensures that
help("ergmTerm") will list ERGM terms available from all loaded packages.

https://github.com/statnet/ergm.userterms
https://github.com/statnet/ergm.userterms

ergmTerm 129

Terms included in the ergm package

As noted above, a cross-referenced HTML version of the term documentation is also available via
vignette('ergm-term-crossRef') and terms can also be searched via search.ergmTerms.

Term index (plain):

Term Package Description Concepts
absdiff(attr, pow) (bin)
absdiff(attr, pow, form)
(val)

ergm Absolute difference in nodal attribute directed
dyad-
independent
quantita-
tive nodal
attribute
undi-
rected

absdiffcat(attr, base,
levels) (bin)
absdiffcat(attr, base,
levels, form) (val)

ergm Categorical absolute difference in nodal attribute categorical
nodal at-
tribute
directed
dyad-
independent
undi-
rected

altkstar(lambda, fixed)
(bin)

ergm Alternating k-star categorical
nodal at-
tribute
curved
undi-
rected

asymmetric(attr, diff,
keep, levels) (bin)

ergm Asymmetric dyads directed
dyad-
independent
triad-
related

atleast(threshold) (val) ergm Number of dyads with values greater than or equal
to a threshold

directed
dyad-
independent
undi-
rected

atmost(threshold) (val) ergm Number of dyads with values less than or equal to a
threshold

directed
dyad-
independent
undi-
rected

130 ergmTerm

attrcov(attr, mat) (bin) ergm Edge covariate by attribute pairing directed
dyad-
independent
undi-
rected

b1concurrent(by, levels)
(bin)

ergm Concurrent node count for the first mode in a bipar-
tite network

bipartite
categori-
cal nodal
attribute
undi-
rected

b1cov(attr) (bin)
b1cov(attr, form) (val)

ergm Main effect of a covariate for the first mode in a bi-
partite network

bipartite
dyad-
independent
frequently-
used
quantita-
tive nodal
attribute
undi-
rected

b1degrange(from, to, by,
homophily, levels) (bin)

ergm Degree range for the first mode in a bipartite net-
work

bipartite
undi-
rected

b1degree(d, by, levels)
(bin)

ergm Degree for the first mode in a bipartite network bipartite
categori-
cal nodal
attribute
frequently-
used
undi-
rected

b1dsp(d) (bin) ergm Dyadwise shared partners for dyads in the first bi-
partition

bipartite
undi-
rected

b1factor(attr, base,
levels) (bin)
b1factor(attr, base,
levels, form) (val)

ergm Factor attribute effect for the first mode in a bipartite
network

bipartite
categori-
cal nodal
attribute
dyad-
independent
frequently-
used
undi-
rected

ergmTerm 131

b1mindegree(d) (bin) ergm Minimum degree for the first mode in a bipartite net-
work

bipartite
undi-
rected

b1nodematch(attr, diff,
keep, alpha, beta,
byb2attr, levels) (bin)

ergm Nodal attribute-based homophily effect for the first
mode in a bipartite network

bipartite
categori-
cal nodal
attribute
dyad-
independent
frequently-
used
undi-
rected

b1sociality(nodes) (bin)
b1sociality(nodes, form)
(val)

ergm Degree bipartite
dyad-
independent
undi-
rected

b1star(k, attr, levels)
(bin)

ergm k-stars for the first mode in a bipartite network bipartite
categori-
cal nodal
attribute
undi-
rected

b1starmix(k, attr, base,
diff) (bin)

ergm Mixing matrix for k-stars centered on the first mode
of a bipartite network

bipartite
categori-
cal nodal
attribute
undi-
rected

b1twostar(b1attr, b2attr,
base, b1levels, b2levels,
levels2) (bin)

ergm Two-star census for central nodes centered on the
first mode of a bipartite network

bipartite
categori-
cal nodal
attribute
undi-
rected

b2concurrent(by) (bin) ergm Concurrent node count for the second mode in a bi-
partite network

bipartite
frequently-
used
undi-
rected

132 ergmTerm

b2cov(attr) (bin)
b2cov(attr, form) (val)

ergm Main effect of a covariate for the second mode in a
bipartite network

bipartite
dyad-
independent
frequently-
used
quantita-
tive nodal
attribute
undi-
rected

b2degrange(from, to, by,
homophily, levels) (bin)

ergm Degree range for the second mode in a bipartite net-
work

bipartite
undi-
rected

b2degree(d, by) (bin) ergm Degree for the second mode in a bipartite network bipartite
categori-
cal nodal
attribute
frequently-
used
undi-
rected

b2dsp(d) (bin) ergm Dyadwise shared partners for dyads in the second
bipartition

bipartite
undi-
rected

b2factor(attr, base,
levels) (bin)
b2factor(attr, base,
levels, form) (val)

ergm Factor attribute effect for the second mode in a bi-
partite network

bipartite
categori-
cal nodal
attribute
dyad-
independent
frequently-
used
undi-
rected

b2mindegree(d) (bin) ergm Minimum degree for the second mode in a bipartite
network

bipartite
undi-
rected

b2nodematch(attr, diff,
keep, alpha, beta,
byb1attr, levels) (bin)

ergm Nodal attribute-based homophily effect for the sec-
ond mode in a bipartite network

bipartite
categori-
cal nodal
attribute
dyad-
independent
frequently-
used
undi-
rected

ergmTerm 133

b2sociality(nodes) (bin)
b2sociality(nodes, form)
(val)

ergm Degree bipartite
dyad-
independent
undi-
rected

b2star(k, attr, levels)
(bin)

ergm k-stars for the second mode in a bipartite network bipartite
categori-
cal nodal
attribute
undi-
rected

b2starmix(k, attr, base,
diff) (bin)

ergm Mixing matrix for k-stars centered on the second
mode of a bipartite network

bipartite
categori-
cal nodal
attribute
undi-
rected

b2twostar(b1attr, b2attr,
base, b1levels, b2levels,
levels2) (bin)

ergm Two-star census for central nodes centered on the
second mode of a bipartite network

bipartite
categori-
cal nodal
attribute
undi-
rected

balance (bin) ergm Balanced triads directed
triad-
related
undi-
rected

coincidence(levels,
active) (bin)

ergm Coincident node count for the second mode in a bi-
partite (aka two-mode) network

bipartite
undi-
rected

concurrent(by, levels)
(bin)

ergm Concurrent node count categorical
nodal at-
tribute
undi-
rected

concurrentties(by,
levels) (bin)

ergm Concurrent tie count categorical
nodal at-
tribute
undi-
rected

ctriple(attr, diff,
levels) (bin)
ctriad (bin)

ergm Cyclic triples categorical
nodal at-
tribute
directed
triad-
related

134 ergmTerm

cycle(k, semi) (bin) ergm k-Cycle Census directed
undi-
rected

cyclicalties(attr,
levels) (bin)
cyclicalties(threshold)
(val)

ergm Cyclical ties directed
undi-
rected

cyclicalweights(twopath,
combine, affect) (val)

ergm Cyclical weights directed
nonneg-
ative
undi-
rected

degcor (bin) ergm Degree Correlation undirected
degcrossprod (bin) ergm Degree Cross-Product undirected
degrange(from, to, by,
homophily, levels) (bin)

ergm Degree range categorical
nodal at-
tribute
undi-
rected

degree(d, by, homophily,
levels) (bin)

ergm Degree categorical
nodal
attribute
frequently-
used
undi-
rected

degree1.5 (bin) ergm Degree to the 3/2 power undirected
density (bin) ergm Density directed

dyad-
independent
undi-
rected

diff(attr, pow, dir,
sign.action) (bin)
diff(attr, pow, dir,
sign.action, form) (val)

ergm Difference bipartite
directed
dyad-
independent
frequently-
used
quantita-
tive nodal
attribute
undi-
rected

ddsp(d, type) (bin)
dsp(d, type) (bin)

ergm Directed dyadwise shared partners directed

ergmTerm 135

dyadcov(x, attrname) (bin) ergm Dyadic covariate directed
dyad-
independent
quanti-
tative
dyadic
attribute
undi-
rected

edgecov(x, attrname) (bin)
edgecov(x, attrname,
form) (val)

ergm Edge covariate directed
dyad-
independent
frequently-
used
quan-
titative
dyadic
attribute
undi-
rected

edges (bin)
nonzero (val)
edges (val)

ergm Number of edges in the network directed
dyad-
independent
undi-
rected

equalto(value, tolerance)
(val)

ergm Number of dyads with values equal to a specific
value (within tolerance)

directed
dyad-
independent
undi-
rected

desp(d, type) (bin)
esp(d, type) (bin)

ergm Directed edgewise shared partners directed

greaterthan(threshold)
(val)

ergm Number of dyads with values strictly greater than a
threshold

directed
dyad-
independent
undi-
rected

gwb1degree(decay, fixed,
attr, cutoff, levels) (bin)

ergm Geometrically weighted degree distribution for the
first mode in a bipartite network

bipartite
curved
undi-
rected

gwb1dsp(decay, fixed,
cutoff) (bin)

ergm Geometrically weighted dyadwise shared partner
distribution for dyads in the first bipartition

bipartite
curved
undi-
rected

136 ergmTerm

gwb2degree(decay, fixed,
attr, cutoff, levels) (bin)

ergm Geometrically weighted degree distribution for the
second mode in a bipartite network

bipartite
curved
undi-
rected

gwb2dsp(decay, fixed,
cutoff) (bin)

ergm Geometrically weighted dyadwise shared partner
distribution for dyads in the second bipartition

bipartite
curved
undi-
rected

gwdegree(decay, fixed,
attr, cutoff, levels) (bin)

ergm Geometrically weighted degree distribution curved
frequently-
used
undi-
rected

dgwdsp(decay, fixed,
cutoff, type) (bin)
gwdsp(decay, fixed,
cutoff, type) (bin)

ergm Geometrically weighted dyadwise shared partner
distribution

directed

dgwesp(decay, fixed,
cutoff, type) (bin)
gwesp(decay, fixed,
cutoff, type) (bin)

ergm Geometrically weighted edgewise shared partner
distribution

directed

gwidegree(decay, fixed,
attr, cutoff, levels) (bin)

ergm Geometrically weighted in-degree distribution curved di-
rected

dgwnsp(decay, fixed,
cutoff, type) (bin)
gwnsp(decay, fixed,
cutoff, type) (bin)

ergm Geometrically weighted non-edgewise shared part-
ner distribution

directed

gwodegree(decay, fixed,
attr, cutoff, levels) (bin)

ergm Geometrically weighted out-degree distribution curved di-
rected

hamming(x, cov, attrname)
(bin)

ergm Hamming distance directed
dyad-
independent
undi-
rected

idegrange(from, to, by,
homophily, levels) (bin)

ergm In-degree range categorical
nodal at-
tribute
directed

idegree(d, by, homophily,
levels) (bin)

ergm In-degree categorical
nodal at-
tribute
directed
frequently-
used

idegree1.5 (bin) ergm In-degree to the 3/2 power directed

ergmTerm 137

ininterval(lower, upper,
open) (val)

ergm Number of dyads whose values are in an interval directed
dyad-
independent
undi-
rected

intransitive (bin) ergm Intransitive triads directed
triad-
related

isolatededges (bin) ergm Isolated edges bipartite
undi-
rected

isolates (bin) ergm Isolates directed
frequently-
used
undi-
rected

istar(k, attr, levels)
(bin)

ergm In-stars categorical
nodal at-
tribute
directed

kstar(k, attr, levels)
(bin)

ergm k-stars categorical
nodal at-
tribute
undi-
rected

localtriangle(x) (bin) ergm Triangles within neighborhoods categorical
dyadic
attribute
directed
triad-
related
undi-
rected

m2star (bin) ergm Mixed 2-stars, a.k.a 2-paths directed
meandeg (bin) ergm Mean vertex degree directed

dyad-
independent
undi-
rected

138 ergmTerm

mm(attrs, levels,
levels2) (bin)
mm(attrs, levels,
levels2, form) (val)

ergm Mixing matrix cells and margins categorical
nodal at-
tribute
directed
dyad-
independent
frequently-
used
undi-
rected

mutual(same, by, diff,
keep, levels) (bin)
mutual(form, threshold)
(val)

ergm Mutuality directed
frequently-
used

nearsimmelian (bin) ergm Near simmelian triads directed
triad-
related

nodecov(attr) (bin)
nodemain (bin)
nodecov(attr, form) (val)
nodemain(attr, form) (val)

ergm Main effect of a covariate directed
dyad-
independent
frequently-
used
quantita-
tive nodal
attribute
undi-
rected

nodecovar(center,
transform) (val)

ergm Covariance of undirected dyad values incident on
each actor

directed

nodefactor(attr, base,
levels) (bin)
nodefactor(attr, base,
levels, form) (val)

ergm Factor attribute effect categorical
nodal at-
tribute
directed
dyad-
independent
frequently-
used
undi-
rected

nodeicov(attr) (bin)
nodeicov(attr, form) (val)

ergm Main effect of a covariate for in-edges directed
frequently-
used
quantita-
tive nodal
attribute

nodeicovar(center,
transform) (val)

ergm Covariance of in-dyad values incident on each actor directed

ergmTerm 139

nodeifactor(attr, base,
levels) (bin)
nodeifactor(attr, base,
levels, form) (val)

ergm Factor attribute effect for in-edges categorical
nodal at-
tribute
directed
dyad-
independent
frequently-
used

nodematch(attr, diff,
keep, levels) (bin)
nodematch(attr, diff,
keep, levels, form) (val)
match(attr, diff, keep,
levels, form) (val)

ergm Uniform homophily and differential homophily categorical
nodal at-
tribute
directed
dyad-
independent
frequently-
used
undi-
rected

nodemix(attr, base,
b1levels, b2levels,
levels, levels2) (bin)
nodemix(attr, base,
b1levels, b2levels,
levels, levels2, form)
(val)

ergm Nodal attribute mixing categorical
nodal at-
tribute
directed
dyad-
independent
frequently-
used
undi-
rected

nodeocov(attr) (bin)
nodeocov(attr, form) (val)

ergm Main effect of a covariate for out-edges directed
dyad-
independent
quantita-
tive nodal
attribute

nodeocovar(center,
transform) (val)

ergm Covariance of out-dyad values incident on each ac-
tor

directed

nodeofactor(attr, base,
levels) (bin)
nodeofactor(attr, base,
levels, form) (val)

ergm Factor attribute effect for out-edges categorical
nodal at-
tribute
directed
dyad-
independent

dnsp(d, type) (bin)
nsp(d, type) (bin)

ergm Directed non-edgewise shared partners directed

140 ergmTerm

odegrange(from, to, by,
homophily, levels) (bin)

ergm Out-degree range categorical
nodal at-
tribute
directed

odegree(d, by, homophily,
levels) (bin)

ergm Out-degree categorical
nodal at-
tribute
directed
frequently-
used

odegree1.5 (bin) ergm Out-degree to the 3/2 power directed
opentriad (bin) ergm Open triads triad-

related
undi-
rected

ostar(k, attr, levels)
(bin)

ergm k-Outstars categorical
nodal at-
tribute
directed

receiver(base, nodes)
(bin)
receiver(base, nodes,
form) (val)

ergm Receiver effect directed
dyad-
independent

sender(base, nodes) (bin)
sender(base, nodes, form)
(val)

ergm Sender effect directed
dyad-
independent

simmelian (bin) ergm Simmelian triads directed
triad-
related

simmelianties (bin) ergm Ties in simmelian triads directed
triad-
related

smalldiff(attr, cutoff)
(bin)

ergm Number of ties between actors with similar attribute
values

directed
dyad-
independent
quantita-
tive nodal
attribute
undi-
rected

smallerthan(threshold)
(val)

ergm Number of dyads with values strictly smaller than a
threshold

directed
dyad-
independent
undi-
rected

ergmTerm 141

sociality(attr, base,
levels, nodes) (bin)
sociality(attr, base,
levels, nodes, form) (val)

ergm Undirected degree categorical
nodal at-
tribute
dyad-
independent
undi-
rected

sum(pow) (val) ergm Sum of dyad values (optionally taken to a power) directed
undi-
rected

threetrail(keep, levels)
(bin)
threepath(keep, levels)
(bin)

ergm Three-trails directed
triad-
related
undi-
rected

transitive (bin) ergm Transitive triads directed
triad-
related

transitiveties(attr,
levels) (bin)

ergm Transitive ties categorical
nodal at-
tribute
directed
triad-
related
undi-
rected

transitiveweights(twopath,
combine, affect) (val)

ergm Transitive weights directed
nonneg-
ative
triad-
related
undi-
rected

triadcensus(levels) (bin) ergm Triad census directed
triad-
related
undi-
rected

142 ergmTerm

triangle(attr, diff,
levels) (bin)
triangles(attr, diff,
levels) (bin)

ergm Triangles categorical
nodal at-
tribute
directed
frequently-
used
triad-
related
undi-
rected

tripercent(attr, diff,
levels) (bin)

ergm Triangle percentage categorical
nodal at-
tribute
triad-
related
undi-
rected

ttriple(attr, diff,
levels) (bin)
ttriad (bin)

ergm Transitive triples categorical
nodal at-
tribute
directed
triad-
related

twopath (bin) ergm 2-Paths directed
undi-
rected

Term index (operator):

Term Package Description Concepts
B(formula, form) (val) ergm Wrap binary terms for use in valued models operator

ergmTerm 143

Curve(formula, params,
map, gradient, minpar,
maxpar, cov) (bin)
Parametrise(formula,
params, map, gradient,
minpar, maxpar, cov) (bin)
Parametrize(formula,
params, map, gradient,
minpar, maxpar, cov) (bin)
Curve(formula, params,
map, gradient, minpar,
maxpar, cov) (val)
Parametrise(formula,
params, map, gradient,
minpar, maxpar, cov) (val)
Parametrize(formula,
params, map, gradient,
minpar, maxpar, cov) (val)

ergm Impose a curved structure on term parameters operator

Exp(formula) (bin)
Exp(formula) (val)

ergm Exponentiate a network’s statistic operator

F(formula, filter) (bin) ergm Filtering on arbitrary one-term model operator
For(...) (bin) ergm A for operator for terms operator
Label(formula, label,
pos) (bin)
Label(formula, label,
pos) (val)

ergm Modify terms’ coefficient names operator

Log(formula, log0) (bin)
Log(formula, log0) (val)

ergm Take a natural logarithm of a network’s statistic operator

NodematchFilter(formula,
attrname) (bin)

ergm Filtering on nodematch operator

Offset(formula, coef,
which) (bin)

ergm Terms with fixed coefficients operator

Prod(formulas, label)
(bin)
Prod(formulas, label) (val)

ergm A product (or an arbitrary power combination) of
one or more formulas

operator

S(formula, attrs) (bin) ergm Evaluation on an induced subgraph operator
Sum(formulas, label) (bin)
Sum(formulas, label) (val)

ergm A sum (or an arbitrary linear combination) of one or
more formulas

operator

Symmetrize(formula, rule)
(bin)

ergm Evaluation on symmetrized (undirected) network directed
operator

Frequently-used terms:

Term bin bip dir dyad-
indep

op val undir

b1cov o o o o o
b1degree o o o

144 ergmTerm

b1factor o o o o o
b1nodematch o o o o
b2concurrent o o o
b2cov o o o o o
b2degree o o o
b2factor o o o o o
b2nodematch o o o o
degree o o
diff o o o o o o
edgecov o o o o o
gwdegree o o
idegree o o
isolates o o o
mm o o o o o
mutual o o o
nodecov o o o o o
nodefactor o o o o o
nodeicov o o o
nodeifactor o o o o
nodematch o o o o o
nodemix o o o o o
odegree o o
triangle o o o

Operator terms:

Term bin bip dir dyad-
indep

val undir

B o
Curve o o
Exp o o
F o
For o
Label o o
Log o o
NodematchFilter o
Offset o
Prod o o
S o
Sum o o
Symmetrize o o

All terms:

Term op val bin dir dyad-
indep

quant
nodal
attr

undir cat
nodal
attr

curved triad
rel

bip freq nneg quant
dyad
attr

cat
dyad
attr

ergmTerm 145

B o o
Curve o o o
Exp o o o
F o o
For o o
Label o o o
Log o o o
NodematchFilter o o
Offset o o
Prod o o o
S o o
Sum o o o
Symmetrize o o o
absdiff o o o o o o
absdiffcat o o o o o o
altkstar o o o o
asymmetric o o o o
atleast o o o o
atmost o o o o
attrcov o o o o
b1concurrent o o o o
b1cov o o o o o o o
b1degrange o o o
b1degree o o o o o
b1dsp o o o
b1factor o o o o o o o
b1mindegree o o o
b1nodematch o o o o o o
b1sociality o o o o o
b1star o o o o
b1starmix o o o o
b1twostar o o o o
b2concurrent o o o o
b2cov o o o o o o o
b2degrange o o o
b2degree o o o o o
b2dsp o o o
b2factor o o o o o o o
b2mindegree o o o
b2nodematch o o o o o o
b2sociality o o o o o
b2star o o o o
b2starmix o o o o
b2twostar o o o o
balance o o o o
coincidence o o o

146 ergmTerm

concurrent o o o
concurrentties o o o
ctriple o o o o
cycle o o o
cyclicalties o o o o
cyclicalweights o o o o
degcor o o
degcrossprod o o
degrange o o o
degree o o o o
degree1.5 o o
density o o o o
diff o o o o o o o o
dsp o o
dyadcov o o o o o
edgecov o o o o o o o
edges o o o o o
equalto o o o o
esp o o
greaterthan o o o o
gwb1degree o o o o
gwb1dsp o o o o
gwb2degree o o o o
gwb2dsp o o o o
gwdegree o o o o
gwdsp o o
gwesp o o
gwidegree o o o
gwnsp o o
gwodegree o o o
hamming o o o o
idegrange o o o
idegree o o o o
idegree1.5 o o
ininterval o o o o
intransitive o o o
isolatededges o o o
isolates o o o o
istar o o o
kstar o o o
localtriangle o o o o o
m2star o o
meandeg o o o o
mm o o o o o o o
mutual o o o o
nearsimmelian o o o

ergmTerm 147

nodecov o o o o o o o
nodecovar o o
nodefactor o o o o o o o
nodeicov o o o o o
nodeicovar o o
nodeifactor o o o o o o
nodematch o o o o o o o
nodemix o o o o o o o
nodeocov o o o o o
nodeocovar o o
nodeofactor o o o o o
nsp o o
odegrange o o o
odegree o o o o
odegree1.5 o o
opentriad o o o
ostar o o o
receiver o o o o
sender o o o o
simmelian o o o
simmelianties o o o
smalldiff o o o o o
smallerthan o o o o
sociality o o o o o
sum o o o
threetrail o o o o
transitive o o o
transitiveties o o o o o
transitiveweights o o o o o
triadcensus o o o o
triangle o o o o o o
tripercent o o o o
ttriple o o o o
twopath o o o

Terms by keywords:

operator B, Curve, Exp, F, For, Label, Log, NodematchFilter, Offset, Prod, S, Sum, Symmetrize
valued B, Curve, Exp, Label, Log, Prod, Sum, absdiff, absdiffcat, atleast, atmost, b1cov, b1factor,

b1sociality, b2cov, b2factor, b2sociality, cyclicalties, cyclicalweights, diff, edgecov, edges,
equalto, greaterthan, ininterval, mm, mutual, nodecov, nodecovar, nodefactor, nodeicov,
nodeicovar, nodeifactor, nodematch, nodemix, nodeocov, nodeocovar, nodeofactor, receiver,
sender, smallerthan, sociality, sum, transitiveweights

binary Curve, Exp, F, For, Label, Log, NodematchFilter, Offset, Prod, S, Sum, Symmetrize, ab-
sdiff, absdiffcat, altkstar, asymmetric, attrcov, b1concurrent, b1cov, b1degrange, b1degree,
b1dsp, b1factor, b1mindegree, b1nodematch, b1sociality, b1star, b1starmix, b1twostar, b2concurrent,
b2cov, b2degrange, b2degree, b2dsp, b2factor, b2mindegree, b2nodematch, b2sociality, b2star,

148 ergmTerm

b2starmix, b2twostar, balance, coincidence, concurrent, concurrentties, ctriple, cycle, cycli-
calties, degcor, degcrossprod, degrange, degree, degree1.5, density, diff, dsp, dyadcov, edge-
cov, edges, esp, gwb1degree, gwb1dsp, gwb2degree, gwb2dsp, gwdegree, gwdsp, gwesp,
gwidegree, gwnsp, gwodegree, hamming, idegrange, idegree, idegree1.5, intransitive, isolat-
ededges, isolates, istar, kstar, localtriangle, m2star, meandeg, mm, mutual, nearsimmelian,
nodecov, nodefactor, nodeicov, nodeifactor, nodematch, nodemix, nodeocov, nodeofactor,
nsp, odegrange, odegree, odegree1.5, opentriad, ostar, receiver, sender, simmelian, sim-
melianties, smalldiff, sociality, threetrail, transitive, transitiveties, triadcensus, triangle, triper-
cent, ttriple, twopath

directed Symmetrize, absdiff, absdiffcat, asymmetric, atleast, atmost, attrcov, balance, ctriple,
cycle, cyclicalties, cyclicalweights, density, diff, dsp, dyadcov, edgecov, edges, equalto,
esp, greaterthan, gwdsp, gwesp, gwidegree, gwnsp, gwodegree, hamming, idegrange, ide-
gree, idegree1.5, ininterval, intransitive, isolates, istar, localtriangle, m2star, meandeg, mm,
mutual, nearsimmelian, nodecov, nodecovar, nodefactor, nodeicov, nodeicovar, nodeifactor,
nodematch, nodemix, nodeocov, nodeocovar, nodeofactor, nsp, odegrange, odegree, ode-
gree1.5, ostar, receiver, sender, simmelian, simmelianties, smalldiff, smallerthan, sum, three-
trail, transitive, transitiveties, transitiveweights, triadcensus, triangle, ttriple, twopath

dyad-independent absdiff, absdiffcat, asymmetric, atleast, atmost, attrcov, b1cov, b1factor, b1nodematch,
b1sociality, b2cov, b2factor, b2nodematch, b2sociality, density, diff, dyadcov, edgecov, edges,
equalto, greaterthan, hamming, ininterval, meandeg, mm, nodecov, nodefactor, nodeifactor,
nodematch, nodemix, nodeocov, nodeofactor, receiver, sender, smalldiff, smallerthan, social-
ity

quantitative nodal attribute absdiff, b1cov, b2cov, diff, nodecov, nodeicov, nodeocov, smalldiff
undirected absdiff, absdiffcat, altkstar, atleast, atmost, attrcov, b1concurrent, b1cov, b1degrange,

b1degree, b1dsp, b1factor, b1mindegree, b1nodematch, b1sociality, b1star, b1starmix, b1twostar,
b2concurrent, b2cov, b2degrange, b2degree, b2dsp, b2factor, b2mindegree, b2nodematch,
b2sociality, b2star, b2starmix, b2twostar, balance, coincidence, concurrent, concurrentties,
cycle, cyclicalties, cyclicalweights, degcor, degcrossprod, degrange, degree, degree1.5, den-
sity, diff, dyadcov, edgecov, edges, equalto, greaterthan, gwb1degree, gwb1dsp, gwb2degree,
gwb2dsp, gwdegree, hamming, ininterval, isolatededges, isolates, kstar, localtriangle, me-
andeg, mm, nodecov, nodefactor, nodematch, nodemix, opentriad, smalldiff, smallerthan,
sociality, sum, threetrail, transitiveties, transitiveweights, triadcensus, triangle, tripercent,
twopath

categorical nodal attribute absdiffcat, altkstar, b1concurrent, b1degree, b1factor, b1nodematch,
b1star, b1starmix, b1twostar, b2degree, b2factor, b2nodematch, b2star, b2starmix, b2twostar,
concurrent, concurrentties, ctriple, degrange, degree, idegrange, idegree, istar, kstar, mm,
nodefactor, nodeifactor, nodematch, nodemix, nodeofactor, odegrange, odegree, ostar, so-
ciality, transitiveties, triangle, tripercent, ttriple

curved altkstar, gwb1degree, gwb1dsp, gwb2degree, gwb2dsp, gwdegree, gwidegree, gwode-
gree

triad-related asymmetric, balance, ctriple, intransitive, localtriangle, nearsimmelian, opentriad,
simmelian, simmelianties, threetrail, transitive, transitiveties, transitiveweights, triadcensus,
triangle, tripercent, ttriple

bipartite b1concurrent, b1cov, b1degrange, b1degree, b1dsp, b1factor, b1mindegree, b1nodematch,
b1sociality, b1star, b1starmix, b1twostar, b2concurrent, b2cov, b2degrange, b2degree, b2dsp,
b2factor, b2mindegree, b2nodematch, b2sociality, b2star, b2starmix, b2twostar, coincidence,
diff, gwb1degree, gwb1dsp, gwb2degree, gwb2dsp, isolatededges

ergmTerm 149

frequently-used b1cov, b1degree, b1factor, b1nodematch, b2concurrent, b2cov, b2degree, b2factor,
b2nodematch, degree, diff, edgecov, gwdegree, idegree, isolates, mm, mutual, nodecov,
nodefactor, nodeicov, nodeifactor, nodematch, nodemix, odegree, triangle

nonnegative cyclicalweights, transitiveweights
quantitative dyadic attribute dyadcov, edgecov
categorical dyadic attribute localtriangle

References

• Krivitsky P. N., Hunter D. R., Morris M., Klumb C. (2021). "ergm 4.0: New features and
improvements." arXiv:2106.04997. https://arxiv.org/abs/2106.04997

• Bomiriya, R. P, Bansal, S., and Hunter, D. R. (2014). Modeling Homophily in ERGMs for
Bipartite Networks. Submitted.

• Butts, CT. (2008). "A Relational Event Framework for Social Action." Sociological Method-
ology, 38(1).

• Davis, J.A. and Leinhardt, S. (1972). The Structure of Positive Interpersonal Relations in
Small Groups. In J. Berger (Ed.), Sociological Theories in Progress, Volume 2, 218–251.
Boston: Houghton Mifflin.

• Holland, P. W. and S. Leinhardt (1981). An exponential family of probability distributions for
directed graphs. Journal of the American Statistical Association, 76: 33–50.

• Hunter, D. R. and M. S. Handcock (2006). Inference in curved exponential family models for
networks. Journal of Computational and Graphical Statistics, 15: 565–583.

• Hunter, D. R. (2007). Curved exponential family models for social networks. Social Networks,
29: 216–230.

• Krackhardt, D. and Handcock, M. S. (2007). Heider versus Simmel: Emergent Features in
Dynamic Structures. Lecture Notes in Computer Science, 4503, 14–27.

• Krivitsky P. N. (2012). Exponential-Family Random Graph Models for Valued Networks.
Electronic Journal of Statistics, 2012, 6, 1100-1128. doi:10.1214/12EJS696

• Robins, G; Pattison, P; and Wang, P. (2009). "Closure, Connectivity, and Degree Distributions:
Exponential Random Graph (p*) Models for Directed Social Networks." Social Networks,
31:105-117.

• Snijders T. A. B., G. G. van de Bunt, and C. E. G. Steglich. Introduction to Stochastic Actor-
Based Models for Network Dynamics. Social Networks, 2010, 32(1), 44-60. doi:10.1016/
j.socnet.2009.02.004

• Morris M, Handcock MS, and Hunter DR. Specification of Exponential-Family Random Graph
Models: Terms and Computational Aspects. Journal of Statistical Software, 2008, 24(4), 1-24.
doi:10.18637/jss.v024.i04

• Snijders, T. A. B., P. E. Pattison, G. L. Robins, and M. S. Handcock (2006). New specifications
for exponential random graph models, Sociological Methodology, 36(1): 99-153.

See Also

ergm package, search.ergmTerms, ergm, network, %v%, %n%

https://arxiv.org/abs/2106.04997
https://doi.org/10.1214/12-EJS696
https://doi.org/10.1016/j.socnet.2009.02.004
https://doi.org/10.1016/j.socnet.2009.02.004
https://doi.org/10.18637/jss.v024.i04

150 ergm_MCMC_sample

Examples

Not run:
ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle)

ergm(molecule ~ edges + kstar(2:3) + triangle
+ nodematch("atomic type",diff=TRUE)
+ triangle + absdiff("atomic type"))

End(Not run)

ergm_MCMC_sample Internal Function to Sample Networks and Network Statistics

Description

This is an internal function, not normally called directly by the user. The ergm_MCMC_sample
function samples networks and network statistics using an MCMC algorithm via MCMC_wrapper
and is capable of running in multiple threads using ergm_MCMC_slave.

The ergm_MCMC_slave function calls the actual C routine and does minimal preprocessing.

Usage

ergm_MCMC_sample(
state,
control,
theta = NULL,
verbose = FALSE,
...,
eta = ergm.eta(theta, (if (is.ergm_state(state)) as.ergm_model(state) else
as.ergm_model(state[[1]]))$etamap)

)

ergm_MCMC_slave(
state,
eta,
control,
verbose,
...,
burnin = NULL,
samplesize = NULL,
interval = NULL

)

Arguments

state an ergm_state representing the sampler state, containing information about
the network, the model, the proposal, and (optionally) initial statistics, or a list
thereof.

ergm_MCMC_sample 151

control A list of control parameters for algorithm tuning, typically constructed with
control.ergm(), control.simulate.ergm(), etc., which have different de-
faults. Their documentation gives the the list of recognized control parameters
and their meaning. The more generic utility snctrl() (StatNet ConTRoL) also
provides argument completion for the available control functions and limited
argument name checking.

theta the (possibly curved) parameters of the model.

verbose A logical or an integer to control the amount of progress and diagnostic in-
formation to be printed. FALSE/0 produces minimal output, with higher values
producing more detail. Note that very high values (5+) may significantly slow
down processing.

... additional arugments.

eta the natural parameters of the model; by default constructed from theta.
burnin, samplesize, interval

MCMC paramters that can be used to temporarily override those in the control
list.

Value

ergm_MCMC_sample returns a list containing:

stats an mcmc.list with sampled statistics.

networks a list of final sampled networks, one for each thread.

status status code, propagated from ergm_MCMC_slave().

final.interval adaptively determined MCMC interval.
final.effectiveSize

adaptively determined target ESS (non-trivial if control$MCMC.effectiveSize
is specified via a matrix).

sampnetworks If control$MCMC.save_networks is set and is TRUE, a list of lists of ergm_states
corresponding to the sampled networks.

ergm_MCMC_slave returns the MCMC sample as a list of the following:

s the matrix of statistics.

state an ergm_state object for the new network.

status success or failure code: 0 is success, 1 for too many edges, and 2 for a Metropolis-
Hastings proposal failing, -1 for ergm_model or ergm_proposal not passed and
missing from the cache.

Note

ergm_MCMC_sample and ergm_MCMC_slave replace ergm.getMCMCsample and ergm.mcmcslave
respectively. They differ slightly in their argument names and in their return formats. For example,
ergm_MCMC_sample expects ergm_state rather than network/model/proposal, and theta or eta
rather than eta0; and it does not return statsmatrix or newnetwork elements. Rather, if parallel
processing is not in effect, stats is an mcmc.list with one chain and networks is a list with one
element.

152 ergm_MCMC_sample

Note that unless stats is a part of the ergm_state, the returned stats will be relative to the original
network, i.e., the calling function must shift the statistics if required.

At this time, repeated calls to ergm_MCMC_sample will not produce the same sequence of networks
as a single long call, even with the same starting seeds. This is because the network sampling algo-
rithms rely on the internal state of the network representation in C, which may not be reconstructed
exactly the same way when "resuming". This behaviour may change in the future.

Examples

This example illustrates constructing "ingredients" for calling
ergm_MCMC_sample() from calls to simulate.ergm(). One can also
construct an ergm_state object directly from ergm_model(),
ergm_proposal(), etc., but the approach shown here is likely to
be the least error-prone and the most robust to future API
changes.
#
The regular simulate() call hierarchy is
#
simulate_formula.network(formula) ->
simulate.ergm_model(ergm_model) ->
simulate.ergm_state_full(ergm_state)
#
They take an argument, return.args=, that will interrupt the call
and have it return its arguments. We can use it to obtain
low-level inputs robustly.

data(florentine)
control <- control.simulate(MCMC.burnin = 2, MCMC.interval = 1)

FYI: Obtain input for simulate.ergm_model():
sim.mod <- simulate(flomarriage~absdiff("wealth"), constraints=~edges,

coef = NULL, nsim=3, control=control,
return.args="ergm_model")

names(sim.mod)
str(sim.mod$object,1) # ergm_model

Obtain input for simulate.ergm_state_full():
sim.state <- simulate(flomarriage~absdiff("wealth"), constraints=~edges,

coef = NULL, nsim=3, control=control,
return.args="ergm_state")

names(sim.state)
str(sim.state$object, 1) # ergm_state

This control parameter would be set by nsim in the regular
simulate() call:
control$MCMC.samplesize <- 3

Capture intermediate networks; can also be left NULL for just the
statistics:
control$MCMC.save_networks <- TRUE

ergm_plot.mcmc.list 153

Simulate starting from this state:
out <- ergm_MCMC_sample(sim.state$object, control, theta = -1, verbose=6)
names(out)
out$stats # Sampled statistics
str(out$networks, 1) # Updated ergm_state (one per thread)
List (an element per thread) of lists of captured ergm_states,
one for each sampled network:
str(out$sampnetworks, 2)
lapply(out$sampnetworks[[1]], as.network) # Converted to networks.

One more, picking up where the previous sampler left off, but see Note:
control$MCMC.samplesize <- 1
str(ergm_MCMC_sample(out$networks, control, theta = -1, verbose=6), 2)

ergm_plot.mcmc.list Plot MCMC list using lattice package graphics

Description

Plot MCMC list using lattice package graphics

Usage

ergm_plot.mcmc.list(x, main = NULL, vars.per.page = 3, ...)

Arguments

x an mcmc.list object containing the mcmc diagnostic samples.

main character, main plot heading title.

vars.per.page Number of rows (one variable per row) per plotting page. Ignored if latticeExtra
package is not installed.

... additional arguments, currently unused.

Note

This is not a method at this time.

154 ergm_state_cache

ergm_state_cache A rudimentary cache for large objects

Description

This cache is intended to store large, infrequently changing data structures such as ergm_models
and ergm_proposals on worker nodes.

Usage

ergm_state_cache(
comm = c("pass", "all", "clear", "insert", "get", "check", "list"),
key,
object

)

Arguments

comm a character string giving the desired function; see the default argument above for
permitted values and Details for meanings; partial matching is supported.

key a character string, typically a digest::digest() of the object or a random
string.

object the object to be stored.
Supported tasks are, respectively, to do nothing (the default), return all entries
(mainly useful for testing), clear the cache, insert into cache, retrieve an object
by key, check if a key is present, or list keys defined.
Deleting an entry can be accomplished by inserting a NULL for that key.
Cache is limited to a hard-coded size (currently 4). This should accommodate an
ergm_model and an ergm_proposal for unconstrained and constrained MCMC.
When additional objects are stored, the oldest object is purged and garbage-
collected.

Note

If called via, say, clusterMap(cl, ergm_state_cache, ...) the function will not accomplish
anything. This is because parallel package will serialise the ergm_state_cache() function ob-
ject, send it to the remote node, evaluate it there, and fetch the return value. This will leave the en-
vironment of the worker’s ergm_state_cache() unchanged. To actually evaluate it on the worker
nodes, it is recommended to wrap it in an empty function whose environment is set to globalenv().
See Examples below.

Examples

Not run:
Wrap ergm_state_cache() and call it explicitly from ergm:
call_ergm_state_cache <- function(...) ergm::ergm_state_cache(...)

ergm_symmetrize 155

Reset the function's environment so that it does not get sent to
worker nodes (who have their own instance of ergm namespace
loaded).
environment(call_ergm_state_cache) <- globalenv()

Now, call the the wrapper function, with ... below replaced by
lists of desired arguments.
clusterMap(cl, call_ergm_state_cache, ...)

End(Not run)

ergm_symmetrize Return a symmetrized version of a binary network

Description

Return a symmetrized version of a binary network

Usage

ergm_symmetrize(x, rule = c("weak", "strong", "upper", "lower"), ...)

Default S3 method:
ergm_symmetrize(x, rule = c("weak", "strong", "upper", "lower"), ...)

S3 method for class 'network'
ergm_symmetrize(x, rule = c("weak", "strong", "upper", "lower"), ...)

Arguments

x an object representing a network.
rule a string specifying how the network is to be symmetrized; see sna::symmetrize()

for details; for the network method, it can also be a function or a list; see Details.
... additional arguments to sna::symmetrize().

Details

The network method requires more flexibility, in order to specify how the edge attributes are han-
dled. Therefore, rule can be one of the following types:

a character vector The string is interpreted as in sna::symmetrize(). For edge attributes, "weak"
takes the maximum value and "strong" takes the minimum value" for ordered attributes, and
drops the unordered.

a function The function is evaluated on a data.frame constructed by joining (via merge()) the
edge tibble with all attributes and NA indicators with itself reversing tail and head columns,
and appending original columns with ".th" and the reversed columns with ".ht". It is then
evaluated for each attribute in turn, given two arguments: the data frame and the name of the
attribute.

156 esp-ergmTerm

a list The list must have exactly one unnamed element, and the remaining elements must be named
with the names of edge attributes. The elements of the list are interpreted as above, allowing
each edge attribute to be handled differently. Unnamed arguments are dropped.

Methods (by class)

• ergm_symmetrize(default): The default method, passing the input on to sna::symmetrize().

• ergm_symmetrize(network): A method for network objects, which preserves network and
vertex attributes, and handles edge attributes.

Note

This was originally exported as a generic to overwrite sna::symmetrize(). By developer’s request,
it has been renamed; eventually, sna or network packages will export the generic instead.

Examples

data(sampson)
samplike[1,2] <- NA
samplike[4.1] <- NA
sm <- as.matrix(samplike)

tst <- function(x,y){
mapply(identical, x, y)

}

stopifnot(all(tst(as.logical(as.matrix(ergm_symmetrize(samplike, "weak"))), sm | t(sm))),
all(tst(as.logical(as.matrix(ergm_symmetrize(samplike, "strong"))), sm & t(sm))),

all(tst(c(as.matrix(ergm_symmetrize(samplike, "upper"))),
sm[cbind(c(pmin(row(sm),col(sm))),c(pmax(row(sm),col(sm))))])),

all(tst(c(as.matrix(ergm_symmetrize(samplike, "lower"))),
sm[cbind(c(pmax(row(sm),col(sm))),c(pmin(row(sm),col(sm))))])))

esp-ergmTerm Directed edgewise shared partners

Description

This term adds one network statistic to the model for each element in d where the i th such statistic
equals the number of edges in the network with exactly d[i] shared partners.

Usage

binary: desp(d, type="OTP")

binary: esp(d, type="OTP")

https://CRAN.R-project.org/package=sna

esp-ergmTerm 157

Arguments

d a vector of distinct integers

type A string indicating the type of shared partner or path to be considered for di-
rected networks: "OTP" (default for directed), "ITP", "RTP", "OSP", and "ISP";
has no effect for undirected. See the section below on Shared partner types for
details.

Shared partner types

While there is only one shared partner configuration in the undirected case, nine distinct configura-
tions are possible for directed graphs, selected using the type argument. Currently, terms may be
defined with respect to five of these configurations; they are defined here as follows (using termi-
nology from Butts (2008) and the relevent package):

• Outgoing Two-path ("OTP"): vertex k is an OTP shared partner of ordered pair (i, j) iff i →
k → j. Also known as "transitive shared partner".

• Incoming Two-path ("ITP"): vertex k is an ITP shared partner of ordered pair (i, j) iff j →
k → i. Also known as "cyclical shared partner"

• Reciprocated Two-path ("RTP"): vertex k is an RTP shared partner of ordered pair (i, j) iff
i↔ k ↔ j.

• Outgoing Shared Partner ("OSP"): vertex k is an OSP shared partner of ordered pair (i, j) iff
i→ k, j → k.

• Incoming Shared Partner ("ISP"): vertex k is an ISP shared partner of ordered pair (i, j) iff
k → i, k → j.

By default, outgoing two-paths ("OTP") are calculated. Note that Robins et al. (2009) define closely
related statistics to several of the above, using slightly different terminology.

Note

This term takes an additional term option (see options?ergm), cache.sp, controlling whether the
implementation will cache the number of shared partners for each dyad in the network; this is
usually enabled by default.

This term can only be used with directed networks.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, binary

158 F-ergmTerm

Exp-ergmTerm Exponentiate a network’s statistic

Description

Evaluate the terms specified in formula and exponentiates them with base e .

Usage

binary: Exp(formula)

valued: Exp(formula)

Arguments

formula a one-sided ergm()-style formula with the terms to be evaluated

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: operator, binary, valued

F-ergmTerm Filtering on arbitrary one-term model

Description

Evaluates the given formula on a network constructed by taking y and removing any edges for
which fi,j(yi,j) = 0 .

Usage

binary: F(formula, filter)

Arguments

formula a one-sided ergm()-style formula with the terms to be evaluated
filter must contain one binary ergm term, with the following properties:

• dyadic independence;
• dyadwise contribution of 0 for a 0-valued dyad.

Formally, this means that it is expressable as

g(y) =
∑
i,j

fi,j(yi,j),

where for all i, j, and y, fi,j(yi,j) for which fi,j(0) = 0. For convenience, the
term in specified can be a part of a simple logical or comparison operation: (e.g.,
~!nodematch("A") or ~abs("X")>3), which filters on fi,j(yi,j)⃝ 0 instead.

faux.desert.high 159

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: operator, binary

faux.desert.high Faux desert High School as a network object

Description

This data set represents a simulation of a directed in-school friendship network. The network is
named faux.desert.high.

Usage

data(faux.desert.high)

Format

faux.desert.high is a network object with 107 vertices (students, in this case) and 439 di-
rected edges (friendship nominations). To obtain additional summary information about it, type
summary(faux.desert.high).

The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12, indi-
cating each student’s grade in school. The Race attribute is based on the answers to two questions,
one on Hispanic identity and one on race, and takes six possible values: White (non-Hisp.), Black
(non-Hisp.), Hispanic, Asian (non-Hisp.), Native American, and Other (non-Hisp.)

Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative
Commons License https://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set, the original authors (Resnick et al, 1997)
should be cited. In addition this package should be cited as:

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 statnet: Software tools for the Statistical Modeling of Network Data
https://statnet.org.

Source

The data set is simulation based upon an ergm model fit to data from one school community from
the AddHealth Study, Wave I (Resnick et al., 1997). It was constructed as follows:

The school in question (a single school with 7th through 12th grades) was selected from the Add
Health "structure files." Documentation on these files can be found here: https://addhealth.
cpc.unc.edu/documentation/codebooks/.

The stucture file contains directed out-ties representing each instance of a student who named an-
other student as a friend. Students could nominate up to 5 male and 5 female friends. Note that

https://creativecommons.org/licenses/by-nc-nd/2.5/
https://statnet.org
https://addhealth.cpc.unc.edu/documentation/codebooks/
https://addhealth.cpc.unc.edu/documentation/codebooks/

160 faux.dixon.high

registered students who did not take the AddHealth survey or who were not listed by name on the
schools’ student roster are not included in the stucture files. In addition, we removed any students
with missing values for race, grade or sex.

The following ergm() specification was fit to the original data (with code updated for modern
syntax):

desert.fit <- ergm(original.net ~ edges + mutual +
absdiff("grade") + nodefactor("race", base=5) + nodefactor("grade", base=3)
+ nodefactor("sex") + nodematch("race", diff = TRUE) + nodematch("grade",
diff = TRUE) + nodematch("sex", diff = FALSE) + idegree(0:1) + odegree(0:1)
+ gwesp(0.1,fixed=T), constraints = ~bd(maxout=10), control =
control.ergm(MCMLE.steplength = .25, MCMC.burnin = 100000, MCMC.interval =
10000, MCMC.samplesize = 2500, MCMLE.maxit = 100), verbose=T)

Then the faux.desert.high dataset was created by simulating a single network from the above model
fit:

faux.desert.high <- simulate(desert.fit, nsim=1,
control=snctrl(MCMC.burnin=1e+8),
constraints = ~edges)

References

Resnick M.D., Bearman, P.S., Blum R.W. et al. (1997). Protecting adolescents from harm. Find-
ings from the National Longitudinal Study on Adolescent Health, Journal of the American Medical
Association, 278: 823-32.

See Also

network, plot.network(), ergm(), faux.desert.high, faux.mesa.high, faux.magnolia.high

faux.dixon.high Faux dixon High School as a network object

Description

This data set represents a simulation of a directed in-school friendship network. The network is
named faux.dixon.high.

Usage

data(faux.dixon.high)

faux.dixon.high 161

Format

faux.dixon.high is a network object with 248 vertices (students, in this case) and 1197 di-
rected edges (friendship nominations). To obtain additional summary information about it, type
summary(faux.dixon.high).

The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12, indi-
cating each student’s grade in school. The Race attribute is based on the answers to two questions,
one on Hispanic identity and one on race, and takes six possible values: White (non-Hisp.), Black
(non-Hisp.), Hispanic, Asian (non-Hisp.), Native American, and Other (non-Hisp.)

Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative
Commons License https://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set, the original authors (Resnick et al, 1997)
should be cited. In addition this package should be cited as:

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 statnet: Software tools for the Statistical Modeling of Network Data
https://statnet.org.

Source

The data set is simulation based upon an ergm model fit to data from one school community from
the AddHealth Study, Wave I (Resnick et al., 1997). It was constructed as follows:

The school in question (a single school with 7th through 12th grades) was selected from the Add
Health "structure files." Documentation on these files can be found here: https://addhealth.
cpc.unc.edu/documentation/codebooks/.

The stucture file contains directed out-ties representing each instance of a student who named an-
other student as a friend. Students could nominate up to 5 male and 5 female friends. Note that
registered students who did not take the AddHealth survey or who were not listed by name on the
schools’ student roster are not included in the stucture files. In addition, we removed any students
with missing values for race, grade or sex.

The following ergm() specification was fit to the original data (with code updated for modern
syntax):

dixon.fit <- ergm(original.net ~ edges + mutual +
absdiff("grade") + nodefactor("race", base=5) + nodefactor("grade", base=3)
+ nodefactor("sex") + nodematch("race", diff = TRUE) + nodematch("grade",
diff = TRUE) + nodematch("sex", diff = FALSE) + idegree(0:1) + odegree(0:1)
+ gwesp(0.1,fixed=T), constraints = ~bd(maxout=10), control =
control.ergm(MCMLE.steplength = .25, MCMC.burnin = 100000, MCMC.interval =
10000, MCMC.samplesize = 2500, MCMLE.maxit = 100), verbose=T)

Then the faux.dixon.high dataset was created by simulating a single network from the above model
fit:

faux.dixon.high <- simulate(dixon.fit, nsim=1, burnin=1e+8,
constraint = "edges")

https://creativecommons.org/licenses/by-nc-nd/2.5/
https://statnet.org
https://addhealth.cpc.unc.edu/documentation/codebooks/
https://addhealth.cpc.unc.edu/documentation/codebooks/

162 faux.magnolia.high

References

Resnick M.D., Bearman, P.S., Blum R.W. et al. (1997). Protecting adolescents from harm. Find-
ings from the National Longitudinal Study on Adolescent Health, Journal of the American Medical
Association, 278: 823-32.

See Also

network, plot.network(), ergm(), faux.desert.high, faux.mesa.high, faux.magnolia.high

faux.magnolia.high Goodreau’s Faux Magnolia High School as a network object

Description

This data set represents a simulation of an in-school friendship network. The network is named
faux.magnolia.high because the school commnunities on which it is based are large and located in
the southern US.

Usage

data(faux.magnolia.high)

Format

faux.magnolia.high is a network object with 1461 vertices (students, in this case) and 974
undirected edges (mutual friendships). To obtain additional summary information about it, type
summary(faux.magnolia.high).

The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12, indi-
cating each student’s grade in school. The Race attribute is based on the answers to two questions,
one on Hispanic identity and one on race, and takes six possible values: White (non-Hisp.), Black
(non-Hisp.), Hispanic, Asian (non-Hisp.), Native American, and Other (non-Hisp.)

Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative
Commons License https://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set, the original authors (Resnick et al, 1997)
should be cited. In addition this package should be cited as:

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 statnet: Software tools for the Statistical Modeling of Network Data
https://statnet.org.

https://creativecommons.org/licenses/by-nc-nd/2.5/
https://statnet.org

faux.mesa.high 163

Source

The data set is based upon a model fit to data from two school communities from the AddHealth
Study, Wave I (Resnick et al., 1997). It was constructed as follows:

The two schools in question (a junior and senior high school in the same community) were com-
bined into a single network dataset. Students who did not take the AddHealth survey or who were
not listed on the schools’ student rosters were eliminated, then an undirected link was established
between any two individuals who both named each other as a friend. All missing race, grade, and
sex values were replaced by a random draw with weights determined by the size of the attribute
classes in the school.

The following ergm() specification was fit to the original data:

magnolia.fit <- ergm (magnolia ~ edges +
nodematch("Grade",diff=T) + nodematch("Race",diff=T) +
nodematch("Sex",diff=F) + absdiff("Grade") + gwesp(0.25,fixed=T),
control=control.ergm(MCMC.burnin=10000, MCMC.interval=1000, MCMLE.maxit=25,

MCMC.samplesize=2500, MCMLE.steplength=0.25))

Then the faux.magnolia.high dataset was created by simulating a single network from the above
model fit:

faux.magnolia.high <- simulate (magnolia.fit, nsim=1,
control = snctrl(MCMC.burnin=100000000), constraints = ~edges)

References

Resnick M.D., Bearman, P.S., Blum R.W. et al. (1997). Protecting adolescents from harm. Find-
ings from the National Longitudinal Study on Adolescent Health, Journal of the American Medical
Association, 278: 823-32.

See Also

network, plot.network(), ergm(), faux.mesa.high

faux.mesa.high Goodreau’s Faux Mesa High School as a network object

Description

This data set (formerly called “fauxhigh”) represents a simulation of an in-school friendship net-
work. The network is named faux.mesa.high because the school commnunity on which it is based
is in the rural western US, with a student body that is largely Hispanic and Native American.

Usage

data(faux.mesa.high)

164 faux.mesa.high

Format

faux.mesa.high is a network object with 205 vertices (students, in this case) and 203 undirected
edges (mutual friendships). To obtain additional summary information about it, type summary(faux.mesa.high).

The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12, indi-
cating each student’s grade in school. The Race attribute is based on the answers to two questions,
one on Hispanic identity and one on race, and takes six possible values: White (non-Hisp.), Black
(non-Hisp.), Hispanic, Asian (non-Hisp.), Native American, and Other (non-Hisp.)

Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative
Commons License https://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set, the original authors (Resnick et al, 1997)
should be cited. In addition this package should be cited as:

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 statnet: Software tools for the Statistical Modeling of Network Data
https://statnet.org.

Source

The data set is based upon a model fit to data from one school community from the AddHealth
Study, Wave I (Resnick et al., 1997). It was constructed as follows:

A vector representing the sex of each student in the school was randomly re-ordered. The same was
done with the students’ response to questions on race and grade. These three attribute vectors were
permuted independently. Missing values for each were randomly assigned with weights determined
by the size of the attribute classes in the school.

The following ergm() specification was used to fit a model to the original data:

~ edges + nodefactor("Grade") + nodefactor("Race") +
nodefactor("Sex") + nodematch("Grade",diff=TRUE) +
nodematch("Race",diff=TRUE) + nodematch("Sex",diff=FALSE) +
gwdegree(1.0,fixed=TRUE) + gwesp(1.0,fixed=TRUE) + gwdsp(1.0,fixed=TRUE)

The resulting model fit was then applied to a network with actors possessing the permuted attributes
and with the same number of edges as in the original data.

The processes for handling missing data and defining the race attribute are described in Hunter,
Goodreau & Handcock (2008).

References

Hunter D.R., Goodreau S.M. and Handcock M.S. (2008). Goodness of Fit of Social Network Mod-
els, Journal of the American Statistical Association.

Resnick M.D., Bearman, P.S., Blum R.W. et al. (1997). Protecting adolescents from harm. Find-
ings from the National Longitudinal Study on Adolescent Health, Journal of the American Medical
Association, 278: 823-32.

https://creativecommons.org/licenses/by-nc-nd/2.5/
https://statnet.org

fix.curved 165

See Also

network, plot.network(), ergm(), faux.magnolia.high

fix.curved Convert a curved ERGM into a corresponding "fixed" ERGM.

Description

The generic fix.curved converts an ergm object or formula of a model with curved terms to the
variant in which the curved parameters are fixed. Note that each term has to be treated as a special
case.

Usage

fix.curved(object, ...)

S3 method for class 'ergm'
fix.curved(object, ...)

S3 method for class 'formula'
fix.curved(object, theta, ...)

Arguments

object An ergm object or an ERGM formula. The curved terms of the given formula
(or the formula used in the fit) must have all of their arguments passed by name.

... Unused at this time.

theta Curved model parameter configuration.

Details

Some ERGM terms such as gwesp and gwdegree have two forms: a curved form, for which their de-
cay or similar parameters are to be estimated, and whose canonical statistics is a vector of the term’s
components (esp(1), esp(2), . . . and degree(1), degree(2), . . . , respectively) and a "fixed" form
where the decay or similar parameters are fixed, and whose canonical statistic is just the term itself.
It is often desirable to fit a model estimating the curved parameters but simulate the "fixed" statistic.

This function thus takes in a fit or a formula and performs this mapping, returning a "fixed" model
and parameter specification. It only works for curved ERGM terms included with the ergm package.
It does not work with curved terms not included in ergm.

Value

A list with the following components:

formula The "fixed" formula.

theta The "fixed" parameter vector.

https://CRAN.R-project.org/package=ergm

166 fixallbut-ergmConstraint

See Also

ergm(), simulate.ergm()

Examples

data(sampson)
gest<-ergm(samplike~edges+gwesp(),

control=control.ergm(MCMLE.maxit=2))
summary(gest)
A statistic for esp(1),...,esp(16)
simulate(gest,output="stats")

tmp<-fix.curved(gest)
tmp
A gwesp() statistic only
simulate(tmp$formula, coef=tmp$theta, output="stats")

fixallbut-ergmConstraint

Preserve the dyad status in all but the given edges

Description

Preserve the dyad status in all but free.dyads.

Usage

fixallbut(free.dyads)

Arguments

free.dyads edgelist or network. Networks will be converted to the corresponding edgelist.

See Also

ergmConstraint for index of constraints and hints currently visible to the package.

Keywords: directed, dyad-independent, undirected

fixedas-ergmConstraint 167

fixedas-ergmConstraint

Fix specific dyads

Description

Fix the dyads in fixed.dyads at their current value, preserve the edges in present, and preclude
the edges in absent.

Usage

fixedas(fixed.dyads, present, absent)

Arguments

fixed.dyads, present, absent
a two-column edge list or a network

Details

present and absent differ from fixed.dyads in that they check that the specified edges are in fact
present and/or absent and stop with an error if not.

See Also

ergmConstraint for index of constraints and hints currently visible to the package.

Keywords: directed, dyad-independent, undirected

florentine Florentine Family Marriage and Business Ties Data as a "network"
object

Description

This is a data set of marriage and business ties among Renaissance Florentine families. The data is
originally from Padgett (1994) via UCINET and stored as a network object.

Usage

data(florentine)

168 For-ergmTerm

Details

Breiger & Pattison (1986), in their discussion of local role analysis, use a subset of data on the so-
cial relations among Renaissance Florentine families (person aggregates) collected by John Padgett
from historical documents. The two relations are business ties (flobusiness - specifically, recorded
financial ties such as loans, credits and joint partnerships) and marriage alliances (flomarriage).

As Breiger & Pattison point out, the original data are symmetrically coded. This is acceptable
perhaps for marital ties, but is unfortunate for the financial ties (which are almost certainly directed).
To remedy this, the financial ties can be recoded as directed relations using some external measure
of power - for instance, a measure of wealth. Both graphs provide vertex information on (1) wealth
each family’s net wealth in 1427 (in thousands of lira); (2) priorates the number of priorates (seats
on the civic council) held between 1282- 1344; and (3) totalties the total number of business or
marriage ties in the total dataset of 116 families (see Breiger & Pattison (1986), p 239).

Substantively, the data include families who were locked in a struggle for political control of the
city of Florence around 1430. Two factions were dominant in this struggle: one revolved around
the infamous Medicis (9), the other around the powerful Strozzis (15).

Source

Padgett, John F. 1994. Marriage and Elite Structure in Renaissance Florence, 1282-1500. Paper
delivered to the Social Science History Association.

References

Wasserman, S. and Faust, K. (1994) Social Network Analysis: Methods and Applications, Cam-
bridge University Press, Cambridge, England.

Breiger R. and Pattison P. (1986). Cumulated social roles: The duality of persons and their alge-
bras, Social Networks, 8, 215-256.

See Also

flo, network, plot.network, ergm

For-ergmTerm A for operator for terms

Description

This operator evaluates the formula given to it, substituting the specified loop counter variable with
each element in a sequence.

Usage

binary: For(...)

For-ergmTerm 169

Arguments

... in any order,

• one unnamed one-sided ergm()-style formula with the terms to be evalu-
ated, containing one or more placeholders VAR and

• one or more named expressions of the form VAR = SEQ specifying the
placeholder and its range. See Details below.

Details

Placeholders are specified in the style of foreach::foreach(), as VAR = SEQ . VAR can be any
valid R variable name, and SEQ can be a vector, a list, a function of one argument, or a one-
sided formula. The vector or list will be used directly, whereas a function will be called with
the network as its argument to produce the list, and the formula will be used analogously to
purrr::as_mapper(), its RHS evaluated in an environment in which the network itself will be
accessible as . or .nw.

If more than one named expression is given, they will be expanded as one would expect in a nested
for loop: earlier expressions will form the outer loops and later expressions the inner loops.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: operator, binary

Examples

#
The following are equivalent ways to compute differential
homophily.
#

data(sampson)
(groups <- sort(unique(samplike%v%"group"))) # Sorted list of groups.

The "normal" way:
summary(samplike ~ nodematch("group", diff=TRUE))

One element at a time, specifying a list:
summary(samplike ~ For(~nodematch("group", levels=., diff=TRUE),

. = groups))

One element at a time, specifying a function that returns a list:
summary(samplike ~ For(~nodematch("group", levels=., diff=TRUE),

. = function(nw) sort(unique(nw%v%"group"))))

One element at a time, specifying a formula whose RHS expression
returns a list:
summary(samplike ~ For(~nodematch("group", levels=., diff=TRUE),

. = ~sort(unique(.%v%"group"))))

170 g4

#
Multiple iterators are possible, in any order. Here, absdiff() is
being computed for each combination of attribute and power.
#

data(florentine)

The "normal" way:
summary(flomarriage ~ absdiff("wealth", pow=1) + absdiff("priorates", pow=1) +

absdiff("wealth", pow=2) + absdiff("priorates", pow=2) +
absdiff("wealth", pow=3) + absdiff("priorates", pow=3))

With a loop; note that the attribute (a) is being iterated within
power (.):
summary(flomarriage ~ For(. = 1:3, a = c("wealth", "priorates"), ~absdiff(a, pow=.)))

g4 Goodreau’s four node network as a "network" object

Description

This is an example thought of by Steve Goodreau. It is a directed network of four nodes and five
ties stored as a network object.

Usage

data(g4)

Details

It is interesting because the maximum likelihood estimator of the model with out degree 3 in it
exists, but the maximum psuedolikelihood estimator does not.

Source

Steve Goodreau

See Also

florentine, network, plot.network, ergm

Examples

data(g4)
summary(ergm(g4 ~ odegree(3), estimate="MPLE"))
summary(ergm(g4 ~ odegree(3), control=control.ergm(init=0)))

geweke.diag.mv 171

geweke.diag.mv Multivariate version of coda’s coda::geweke.diag().

Description

Rather than comparing each mean independently, compares them jointly. Note that it returns an
htest object, not a geweke.diag object.

Usage

geweke.diag.mv(x, frac1 = 0.1, frac2 = 0.5, split.mcmc.list = FALSE, ...)

Arguments

x an mcmc, mcmc.list, or just a matrix with observations in rows and variables in
columns.

frac1, frac2 the fraction at the start and, respectively, at the end of the sample to compare.

split.mcmc.list

when given an mcmc.list, whether to test each chain individually.

... additional arguments, passed on to approx.hotelling.diff.test(), which
passes them to spectrum0.mvar(), etc.; in particular, order.max= can be used
to limit the order of the AR model used to estimate the effective sample size.

Value

An object of class htest, inheriting from that returned by approx.hotelling.diff.test(), but
with p-value considered to be 0 on insufficient sample size.

Note

If approx.hotelling.diff.test() returns an error, then assume that burn-in is insufficient.

See Also

coda::geweke.diag(), approx.hotelling.diff.test()

172 gof

gof Conduct Goodness-of-Fit Diagnostics on a Exponential Family Ran-
dom Graph Model

Description

gof() calculates p-values for geodesic distance, degree, and reachability summaries to diagnose
the goodness-of-fit of exponential family random graph models. See ergm() for more information
on these models.

Usage

gof(object, ...)

S3 method for class 'ergm'
gof(
object,
...,
coef = coefficients(object),
GOF = NULL,
constraints = object$constraints,
control = control.gof.ergm(),
verbose = FALSE

)

S3 method for class 'formula'
gof(
object,
...,
coef = NULL,
GOF = NULL,
constraints = ~.,
basis = eval_lhs.formula(object),
control = NULL,
unconditional = TRUE,
verbose = FALSE

)

S3 method for class 'gof'
print(x, ...)

S3 method for class 'gof'
plot(
x,
...,
cex.axis = 0.7,
plotlogodds = FALSE,

gof 173

main = "Goodness-of-fit diagnostics",
normalize.reachability = FALSE,
verbose = FALSE

)

Arguments

object Either a formula or an ergm object. See documentation for ergm().

... Additional arguments, to be passed to lower-level functions.

coef When given either a formula or an object of class ergm, coef are the parameters
from which the sample is drawn. By default set to a vector of 0.

GOF formula; an formula object, of the form ~ <model terms> specifying the statis-
tics to use to diagnosis the goodness-of-fit of the model. They do not need to be
in the model formula specified in formula, and typically are not. Currently sup-
ported terms are the degree distribution (“degree” for undirected graphs, “ide-
gree” and/or “odegree” for directed graphs, and “b1degree” and “b2degree” for
bipartite undirected graphs), geodesic distances (“distance”), shared partner dis-
tributions (“espartners” and “dspartners”), the triad census (“triadcensus”), and
the terms of the original model (“model”). The default formula for undirected
networks is ~ degree + espartners + distance + model, and the default for-
mula for directed networks is ~ idegree + odegree + espartners + distance
+ model. By default a “model” term is added to the formula. It is a very useful
overall validity check and a reminder of the statistical variation in the estimates
of the mean value parameters. To omit the “model” term, add “- model” to the
formula.

constraints A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being modeled. See the help for similarly-named
argument in ergm() for more information. For gof.formula, defaults to un-
constrained. For gof.ergm, defaults to the constraints with which object was
fitted.

control A list of control parameters for algorithm tuning, typically constructed with
control.gof.formula() or control.gof.ergm(), which have different de-
faults. Their documentation gives the the list of recognized control parameters
and their meaning. The more generic utility snctrl() (StatNet ConTRoL) also
provides argument completion for the available control functions and limited
argument name checking.

verbose A logical or an integer to control the amount of progress and diagnostic in-
formation to be printed. FALSE/0 produces minimal output, with higher values
producing more detail. Note that very high values (5+) may significantly slow
down processing.

basis a value (usually a network) to override the LHS of the formula.

unconditional logical; if TRUE, the simulation is unconditional on the observed dyads. if not
TRUE, the simulation is conditional on the observed dyads. This is primarily used
internally when the network has missing data and a conditional GoF is produced.

x an object of class gof for printing or plotting.

cex.axis Character expansion of the axis labels relative to that for the plot.

174 gof

plotlogodds Plot the odds of a dyad having given characteristics (e.g., reachability, minimum
geodesic distance, shared partners). This is an alternative to the probability of a
dyad having the same property.

main Title for the goodness-of-fit plots.
normalize.reachability

Should the reachability proportion be normalized to make it more comparable
with the other geodesic distance proportions.

Details

A sample of graphs is randomly drawn from the specified model. The first argument is typically the
output of a call to ergm() and the model used for that call is the one fit.

For GOF = ~model, the model’s observed sufficient statistics are plotted as quantiles of the simulated
sample. In a good fit, the observed statistics should be near the sample median (0.5).

By default, the sample consists of 100 simulated networks, but this sample size (and many other
settings) can be changed using the control argument described above.

Value

gof(), gof.ergm(), and gof.formula() return an object of class gof.ergm, which inherits from
class gof. This is a list of the tables of statistics and p-values. This is typically plotted using
plot.gof().

Methods (by class)

• gof(ergm): Perform simulation to evaluate goodness-of-fit for a specific ergm() fit.

• gof(formula): Perform simulation to evaluate goodness-of-fit for a model configuration
specified by a formula, coefficient, constraints, and other settings.

Methods (by generic)

• print(gof): print.gof() summaries the diagnostics such as the degree distribution, geodesic
distances, shared partner distributions, and reachability for the goodness-of-fit of exponential
family random graph models. (summary.gof is a deprecated alias that may be repurposed in
the future.)

• plot(gof): plot.gof() plots diagnostics such as the degree distribution, geodesic distances,
shared partner distributions, and reachability for the goodness-of-fit of exponential family
random graph models.

Note

For gof.ergm and gof.formula, default behavior depends on the directedness of the network in-
volved; if undirected then degree, espartners, and distance are used as default properties to examine.
If the network in question is directed, “degree” in the above is replaced by idegree and odegree.

See Also

ergm(), network(), simulate.ergm(), summary.ergm()

greaterthan-ergmTerm 175

Examples

data(florentine)
gest <- ergm(flomarriage ~ edges + kstar(2))
gest
summary(gest)

test the gof.ergm function
gofflo <- gof(gest)
gofflo

Plot all three on the same page
with nice margins
par(mfrow=c(1,3))
par(oma=c(0.5,2,1,0.5))
plot(gofflo)

And now the log-odds
plot(gofflo, plotlogodds=TRUE)

Use the formula version of gof
gofflo2 <-gof(flomarriage ~ edges + kstar(2), coef=c(-1.6339, 0.0049))
plot(gofflo2)

greaterthan-ergmTerm Number of dyads with values strictly greater than a threshold

Description

Adds the number of statistics equal to the length of threshold equaling to the number of dyads
whose values exceed the corresponding element of threshold .

Usage

valued: greaterthan(threshold=0)

Arguments

threshold a vector of numerical values

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, dyad-independent, undirected, valued

176 gwb1degree-ergmTerm

gwb1degree-ergmTerm Geometrically weighted degree distribution for the first mode in a bi-
partite network

Description

This term adds one network statistic to the model equal to the weighted degree distribution with
decay controlled by the decay parameter, which should be non-negative, for nodes in the first mode
of a bipartite network. The first mode of a bipartite network object is sometimes known as the
"actor" mode.

This term can only be used with undirected bipartite networks.

Usage

binary: gwb1degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL)

Arguments

decay nonnegative decay parameter for the first mode degree frequencies; required if
fixed=TRUE and ignored with a warning otherwise.

fixed optional argument indicating whether the decay parameter is fixed at the given
value, or is to be fit as a curved exponential-family model (see Hunter and Hand-
cock, 2006). The default is FALSE , which means the scale parameter is not fixed
and thus the model is a curved exponential family.

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

cutoff This optional argument sets the number of underlying degree terms to use in
computing the statistics when fixed=FALSE, in order to reduce the computa-
tional burden. Its default value can also be controlled by the gw.cutoff term
option control parameter. (See ?control.ergm.)

levels TODO (See Specifying Vertex attributes and Levels (?nodal_attributes) for
details.)

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, curved, undirected, binary

gwb1dsp-ergmTerm 177

gwb1dsp-ergmTerm Geometrically weighted dyadwise shared partner distribution for
dyads in the first bipartition

Description

This term adds one network statistic to the model equal to the geometrically weighted dyadwise
shared partner distribution for dyads in the first bipartition with decay parameter decay parameter,
which should be non-negative. This term can only be used with bipartite networks.

Usage

binary: gwb1dsp(decay=0, fixed=FALSE, cutoff=30)

Arguments

decay nonnegative decay parameter for the shared partner counts; required if fixed=TRUE
and ignored with a warning otherwise.

fixed optional argument indicating whether the decay parameter is fixed at the given
value, or is to be fit as a curved exponential-family model (see Hunter and Hand-
cock, 2006). The default is FALSE , which means the scale parameter is not fixed
and thus the model is a curved exponential family.

cutoff This optional argument sets the number of underlying b1dsp terms to use in
computing the statistics when fixed=FALSE, in order to reduce the computa-
tional burden. Its default value can also be controlled by the gw.cutoff term
option control parameter. (See ?control.ergm.)

Note

This term takes an additional term option (see options?ergm), cache.sp, controlling whether the
implementation will cache the number of shared partners for each dyad in the network; this is
usually enabled by default.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, curved, undirected, binary

178 gwb2degree-ergmTerm

gwb2degree-ergmTerm Geometrically weighted degree distribution for the second mode in a
bipartite network

Description

This term adds one network statistic to the model equal to the weighted degree distribution with
decay controlled by the which should be non-negative, for nodes in the second mode of a bipartite
network. The second mode of a bipartite network object is sometimes known as the "event" mode.

Usage

binary: gwb2degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL)

Arguments

decay nonnegative decay parameter for the second mode degree frequencies; required
if fixed=TRUE and ignored with a warning otherwise.

fixed optional argument indicating whether the decay parameter is fixed at the given
value, or is to be fit as a curved exponential-family model (see Hunter and Hand-
cock, 2006). The default is FALSE , which means the scale parameter is not fixed
and thus the model is a curved exponential family.

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

cutoff This optional argument sets the number of underlying degree terms to use in
computing the statistics when fixed=FALSE, in order to reduce the computa-
tional burden. Its default value can also be controlled by the gw.cutoff term
option control parameter. (See ?control.ergm.)

levels TODO (See Specifying Vertex attributes and Levels (?nodal_attributes) for
details.)

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, curved, undirected, binary

gwb2dsp-ergmTerm 179

gwb2dsp-ergmTerm Geometrically weighted dyadwise shared partner distribution for
dyads in the second bipartition

Description

This term adds one network statistic to the model equal to the geometrically weighted dyadwise
shared partner distribution for dyads in the second bipartition with decay parameter decay parame-
ter, which should be non-negative. This term can only be used with bipartite networks.

Usage

binary: gwb2dsp(decay=0, fixed=FALSE, cutoff=30)

Arguments

decay nonnegative decay parameter for the shared partner counts; required if fixed=TRUE
and ignored with a warning otherwise.

fixed optional argument indicating whether the decay parameter is fixed at the given
value, or is to be fit as a curved exponential-family model (see Hunter and Hand-
cock, 2006). The default is FALSE , which means the scale parameter is not fixed
and thus the model is a curved exponential family.

cutoff This optional argument sets the number of underlying b2dsp terms to use in
computing the statistics when fixed=FALSE, in order to reduce the computa-
tional burden. Its default value can also be controlled by the gw.cutoff term
option control parameter. (See ?control.ergm.)

Note

This term takes an additional term option (see options?ergm), cache.sp, controlling whether the
implementation will cache the number of shared partners for each dyad in the network; this is
usually enabled by default.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, curved, undirected, binary

180 gwdsp-ergmTerm

gwdegree-ergmTerm Geometrically weighted degree distribution

Description

This term adds one network statistic to the model equal to the weighted degree distribution with
decay controlled by the decay parameter, which should be non-negative.

Usage

binary: gwdegree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL)

Arguments

decay nonnegative decay parameter for the degree frequencies; required if fixed=TRUE
and ignored with a warning otherwise.

fixed optional argument indicating whether the decay parameter is fixed at the given
value, or is to be fit as a curved exponential-family model (see Hunter and Hand-
cock, 2006). The default is FALSE , which means the scale parameter is not fixed
and thus the model is a curved exponential family.

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

cutoff This optional argument sets the number of underlying degree terms to use in
computing the statistics when fixed=FALSE, in order to reduce the computa-
tional burden. Its default value can also be controlled by the gw.cutoff term
option control parameter. (See ?control.ergm.)

levels TODO (See Specifying Vertex attributes and Levels (?nodal_attributes) for
details.)

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: curved, frequently-used, undirected, binary

gwdsp-ergmTerm Geometrically weighted dyadwise shared partner distribution

Description

This term adds one network statistic to the model equal to the geometrically weighted dyadwise
shared partner distribution with decay parameter decay parameter.

gwdsp-ergmTerm 181

Usage

binary: dgwdsp(decay, fixed=FALSE, cutoff=30, type="OTP")

binary: gwdsp(decay, fixed=FALSE, cutoff=30, type="OTP")

Arguments

decay nonnegative decay parameter for the shared partner or selected directed analogue
count; required if fixed=TRUE and ignored with a warning otherwise.

fixed optional argument indicating whether the decay parameter is fixed at the given
value, or is to be fit as a curved exponential-family model (see Hunter and Hand-
cock, 2006). The default is FALSE , which means the scale parameter is not fixed
and thus the model is a curved exponential family.

cutoff This optional argument sets the number of underlying DSP terms to use in com-
puting the statistics when fixed=FALSE, in order to reduce the computational
burden. Its default value can also be controlled by the gw.cutoff term option
control parameter. (See ?control.ergm.)

type A string indicating the type of shared partner or path to be considered for di-
rected networks: "OTP" (default for directed), "ITP", "RTP", "OSP", and "ISP";
has no effect for undirected. See the section below on Shared partner types for
details.

Shared partner types

While there is only one shared partner configuration in the undirected case, nine distinct configura-
tions are possible for directed graphs, selected using the type argument. Currently, terms may be
defined with respect to five of these configurations; they are defined here as follows (using termi-
nology from Butts (2008) and the relevent package):

• Outgoing Two-path ("OTP"): vertex k is an OTP shared partner of ordered pair (i, j) iff i →
k → j. Also known as "transitive shared partner".

• Incoming Two-path ("ITP"): vertex k is an ITP shared partner of ordered pair (i, j) iff j →
k → i. Also known as "cyclical shared partner"

• Reciprocated Two-path ("RTP"): vertex k is an RTP shared partner of ordered pair (i, j) iff
i↔ k ↔ j.

• Outgoing Shared Partner ("OSP"): vertex k is an OSP shared partner of ordered pair (i, j) iff
i→ k, j → k.

• Incoming Shared Partner ("ISP"): vertex k is an ISP shared partner of ordered pair (i, j) iff
k → i, k → j.

By default, outgoing two-paths ("OTP") are calculated. Note that Robins et al. (2009) define closely
related statistics to several of the above, using slightly different terminology.

Note

This term takes an additional term option (see options?ergm), cache.sp, controlling whether the
implementation will cache the number of shared partners for each dyad in the network; this is
usually enabled by default.

182 gwesp-ergmTerm

The GWDSP statistic is equal to the sum of GWNSP plus GWESP.

The decay parameter was called alpha prior to ergm 3.7.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, binary

gwesp-ergmTerm Geometrically weighted edgewise shared partner distribution

Description

This term adds a statistic equal to the geometrically weighted edgewise (not dyadwise) shared part-
ner distribution with decay parameter decay parameter.

Usage

binary: dgwesp(decay, fixed=FALSE, cutoff=30, type="OTP")

binary: gwesp(decay, fixed=FALSE, cutoff=30, type="OTP")

Arguments

decay nonnegative decay parameter for the shared partner or selected directed analogue
count; required if fixed=TRUE and ignored with a warning otherwise.

fixed optional argument indicating whether the decay parameter is fixed at the given
value, or is to be fit as a curved exponential-family model (see Hunter and Hand-
cock, 2006). The default is FALSE , which means the scale parameter is not fixed
and thus the model is a curved exponential family.

cutoff This optional argument sets the number of underlying ESP terms to use in com-
puting the statistics when fixed=FALSE, in order to reduce the computational
burden. Its default value can also be controlled by the gw.cutoff term option
control parameter. (See ?control.ergm.)

type A string indicating the type of shared partner or path to be considered for di-
rected networks: "OTP" (default for directed), "ITP", "RTP", "OSP", and "ISP";
has no effect for undirected. See the section below on Shared partner types for
details.

Shared partner types

While there is only one shared partner configuration in the undirected case, nine distinct configura-
tions are possible for directed graphs, selected using the type argument. Currently, terms may be
defined with respect to five of these configurations; they are defined here as follows (using termi-
nology from Butts (2008) and the relevent package):

gwidegree-ergmTerm 183

• Outgoing Two-path ("OTP"): vertex k is an OTP shared partner of ordered pair (i, j) iff i →
k → j. Also known as "transitive shared partner".

• Incoming Two-path ("ITP"): vertex k is an ITP shared partner of ordered pair (i, j) iff j →
k → i. Also known as "cyclical shared partner"

• Reciprocated Two-path ("RTP"): vertex k is an RTP shared partner of ordered pair (i, j) iff
i↔ k ↔ j.

• Outgoing Shared Partner ("OSP"): vertex k is an OSP shared partner of ordered pair (i, j) iff
i→ k, j → k.

• Incoming Shared Partner ("ISP"): vertex k is an ISP shared partner of ordered pair (i, j) iff
k → i, k → j.

By default, outgoing two-paths ("OTP") are calculated. Note that Robins et al. (2009) define closely
related statistics to several of the above, using slightly different terminology.

Note

This term takes an additional term option (see options?ergm), cache.sp, controlling whether the
implementation will cache the number of shared partners for each dyad in the network; this is
usually enabled by default.

The decay parameter was called alpha prior to ergm 3.7.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, binary

gwidegree-ergmTerm Geometrically weighted in-degree distribution

Description

This term adds one network statistic to the model equal to the weighted in-degree distribution with
decay parameter decay parameter, which should be non-negative. This term can only be used with
directed networks.

Usage

binary: gwidegree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL)

184 gwnsp-ergmTerm

Arguments

decay nonnegative decay parameter for the indegree frequencies; required if fixed=TRUE
and ignored with a warning otherwise.

fixed optional argument indicating whether the decay parameter is fixed at the given
value, or is to be fit as a curved exponential-family model (see Hunter and Hand-
cock, 2006). The default is FALSE , which means the scale parameter is not fixed
and thus the model is a curved exponential family.

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

cutoff This optional argument sets the number of underlying degree terms to use in
computing the statistics when fixed=FALSE, in order to reduce the computa-
tional burden. Its default value can also be controlled by the gw.cutoff term
option control parameter. (See ?control.ergm.)

levels TODO (See Specifying Vertex attributes and Levels (?nodal_attributes) for
details.)

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: curved, directed, binary

gwnsp-ergmTerm Geometrically weighted non-edgewise shared partner distribution

Description

This term is just like gwesp and gwdsp except it adds a statistic equal to the geometrically weighted
nonedgewise (that is, over dyads that do not have an edge) shared partner distribution with decay
parameter decay parameter.

Usage

binary: dgwnsp(decay, fixed=FALSE, cutoff=30, type="OTP")

binary: gwnsp(decay, fixed=FALSE, cutoff=30, type="OTP")

Arguments

decay nonnegative decay parameter for the shared partner or selected directed analogue
count; required if fixed=TRUE and ignored with a warning otherwise.

fixed optional argument indicating whether the decay parameter is fixed at the given
value, or is to be fit as a curved exponential-family model (see Hunter and Hand-
cock, 2006). The default is FALSE , which means the scale parameter is not fixed
and thus the model is a curved exponential family.

gwnsp-ergmTerm 185

cutoff This optional argument sets the number of underlying NSP terms to use in com-
puting the statistics when fixed=FALSE, in order to reduce the computational
burden. Its default value can also be controlled by the gw.cutoff term option
control parameter. (See ?control.ergm.)

type A string indicating the type of shared partner or path to be considered for di-
rected networks: "OTP" (default for directed), "ITP", "RTP", "OSP", and "ISP";
has no effect for undirected. See the section below on Shared partner types for
details.

Shared partner types

While there is only one shared partner configuration in the undirected case, nine distinct configura-
tions are possible for directed graphs, selected using the type argument. Currently, terms may be
defined with respect to five of these configurations; they are defined here as follows (using termi-
nology from Butts (2008) and the relevent package):

• Outgoing Two-path ("OTP"): vertex k is an OTP shared partner of ordered pair (i, j) iff i →
k → j. Also known as "transitive shared partner".

• Incoming Two-path ("ITP"): vertex k is an ITP shared partner of ordered pair (i, j) iff j →
k → i. Also known as "cyclical shared partner"

• Reciprocated Two-path ("RTP"): vertex k is an RTP shared partner of ordered pair (i, j) iff
i↔ k ↔ j.

• Outgoing Shared Partner ("OSP"): vertex k is an OSP shared partner of ordered pair (i, j) iff
i→ k, j → k.

• Incoming Shared Partner ("ISP"): vertex k is an ISP shared partner of ordered pair (i, j) iff
k → i, k → j.

By default, outgoing two-paths ("OTP") are calculated. Note that Robins et al. (2009) define closely
related statistics to several of the above, using slightly different terminology.

Note

This term takes an additional term option (see options?ergm), cache.sp, controlling whether the
implementation will cache the number of shared partners for each dyad in the network; this is
usually enabled by default.

The decay parameter was called alpha prior to ergm 3.7.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, binary

186 gwodegree-ergmTerm

gwodegree-ergmTerm Geometrically weighted out-degree distribution

Description

This term adds one network statistic to the model equal to the weighted out-degree distribution with
decay parameter decay parameter, which should be non-negative. This term can only be used with
directed networks.

Usage

binary: gwodegree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL)

Arguments

decay nonnegative decay parameter for the outdegree frequencies; required if fixed=TRUE
and ignored with a warning otherwise.

fixed optional argument indicating whether the decay parameter is fixed at the given
value, or is to be fit as a curved exponential-family model (see Hunter and Hand-
cock, 2006). The default is FALSE , which means the scale parameter is not fixed
and thus the model is a curved exponential family.

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

cutoff This optional argument sets the number of underlying degree terms to use in
computing the statistics when fixed=FALSE, in order to reduce the computa-
tional burden. Its default value can also be controlled by the gw.cutoff term
option control parameter. (See ?control.ergm.)

levels TODO (See Specifying Vertex attributes and Levels (?nodal_attributes) for
details.)

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: curved, directed, binary

hamming-ergmConstraint 187

hamming-ergmConstraint

Preserve the hamming distance to the given network (BROKEN: Do
NOT Use)

Description

This constraint is currently broken. Do not use.

Usage

hamming

See Also

ergmConstraint for index of constraints and hints currently visible to the package.

Keywords: directed, undirected

hamming-ergmTerm Hamming distance

Description

This term adds one statistic to the model equal to the weighted or unweighted Hamming distance
of the network from the network specified by x . Unweighted Hamming distance is defined as the
total number of pairs (i, j) (ordered or unordered, depending on whether the network is directed or
undirected) on which the two networks differ. If the optional argument cov is specified, then the
weighted Hamming distance is computed instead, where each pair (i, j) contributes a pre-specified
weight toward the distance when the two networks differ on that pair.

Usage

binary: hamming(x, cov, attrname=NULL)

Arguments

x defaults to be the observed network, i.e., the network on the left side of the ∼ in
the formula that defines the ERGM.

cov either a matrix of edgewise weights or a network

attrname option argument that provides the name of the edge attribute to use for weight
values when a network is specified in cov

188 idegrange-ergmTerm

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, dyad-independent, undirected, binary

idegrange-ergmTerm In-degree range

Description

This term adds one network statistic to the model for each element of from (or to); the i th such
statistic equals the number of nodes in the network of in-degree greater than or equal to from[i]
but strictly less than to[i] , i.e. with in-edge count in semiopen interval [from,to) .

This term can only be used with directed networks; for undirected networks (bipartite and not) see
degrange . For degrees of specific modes of bipartite networks, see b1degrange and b2degrange
. For in-degrees, see idegrange .

Usage

binary: idegrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL)

Arguments

from, to vectors of distinct integers. If one of the vectors have length 1, it is recycled to
the length of the other. Otherwise, it must have the same length.

by, levels, homophily
the optional argument by specifies a vertex attribute (see Specifying Vertex at-
tributes and Levels (?nodal_attributes) for details). If this is specified and
homophily is TRUE , then degrees are calculated using the subnetwork consist-
ing of only edges whose endpoints have the same value of the by attribute. If
by is specified and homophily is FALSE (the default), then separate degree range
statistics are calculated for nodes having each separate value of the attribute.
levels selects which levels of by‘ to include.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, directed, binary

idegree-ergmTerm 189

idegree-ergmTerm In-degree

Description

This term adds one network statistic to the model for each element in d ; the i th such statistic equals
the number of nodes in the network of in-degree d[i] , i.e. the number of nodes with exactly d[i]
in-edges. This term can only be used with directed networks; for undirected networks see degree .

Usage

binary: idegree(d, by=NULL, homophily=FALSE, levels=NULL)

Arguments

d a vector of distinct integers
by, levels, homophily

the optional argument by specifies a vertex attribute (see Specifying Vertex at-
tributes and Levels (?nodal_attributes) for details). If this is specified and
homophily is TRUE , then degrees are calculated using the subnetwork consist-
ing of only edges whose endpoints have the same value of the by attribute. If
by is specified and homophily is FALSE (the default), then separate degree range
statistics are calculated for nodes having each separate value of the attribute.
levels selects which levels of by‘ to include.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, directed, frequently-used, binary

idegree1.5-ergmTerm In-degree to the 3/2 power

Description

This term adds one network statistic to the model equaling the sum over the actors of each actor’s
indegree taken to the 3/2 power (or, equivalently, multiplied by its square root). This term is analo-
gous to the term of Snijders et al. (2010), equation (12). This term can only be used with directed
networks.

Usage

binary: idegree1.5

190 idegrees-ergmConstraint

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, binary

idegreedist-ergmConstraint

Preserve the indegree distribution

Description

Preserve the indegree distribution of the given network.

Usage

idegreedist

See Also

ergmConstraint for index of constraints and hints currently visible to the package.

Keywords: directed

idegrees-ergmConstraint

Preserve indegree for directed networks

Description

For directed networks, preserve the indegree of each vertex of the given network, while allowing
outdegree to vary

Usage

idegrees

See Also

ergmConstraint for index of constraints and hints currently visible to the package.

Keywords: directed

ininterval-ergmTerm 191

ininterval-ergmTerm Number of dyads whose values are in an interval

Description

Adds one statistic equaling to the number of dyads whose values are between lower and upper .

Usage

valued: ininterval(lower=-Inf, upper=+Inf, open=c(TRUE,TRUE))

Arguments

lower defaults to -Inf
upper defaults to +Inf
open a logical vector of length 2 that controls whether the interval is open (exclu-

sive) on the lower and on the upper end, respectively. open can also be specified
as one of "[]" , "(]" , "[)" , and "()" .

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, dyad-independent, undirected, valued

intransitive-ergmTerm Intransitive triads

Description

This term adds one statistic to the model, equal to the number of triads in the network that are intran-
sitive. The intransitive triads are those of type 111D , 201 , 111U , 021C , or 030C in the categorization
of Davis and Leinhardt (1972). For details on the 16 possible triad types, see triad.classify in
the sna package. Note the distinction from the ctriple term.

Usage

binary: intransitive

Note

This term can only be used with directed networks.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, triad-related, binary

https://CRAN.R-project.org/package=sna

192 is.curved

is.curved Testing for curved exponential family

Description

These functions test whether an ERGM fit, formula, or some other object represents a curved expo-
nential family.

The method for NULL always returns FALSE by convention.

Usage

is.curved(object, ...)

S3 method for class '`NULL`'
is.curved(object, ...)

S3 method for class 'formula'
is.curved(object, response = NULL, basis = NULL, ...)

S3 method for class 'ergm'
is.curved(object, ...)

Arguments

object An ergm object or an ERGM formula.

... Arguments passed on to lower-level functions.

response Either a character string, a formula, or NULL (the default), to specify the response
attributes and whether the ERGM is binary or valued. Interpreted as follows:

NULL Model simple presence or absence, via a binary ERGM.
character string The name of the edge attribute whose value is to be modeled.

Type of ERGM will be determined by whether the attribute is logical
(TRUE/FALSE) for binary or numeric for valued.

a formula must be of the form NAME~EXPR|TYPE (with | being literal). EXPR is
evaluated in the formula’s environment with the network’s edge attributes
accessible as variables. The optional NAME specifies the name of the edge
attribute into which the results should be stored, with the default being a
concise version of EXPR. Normally, the type of ERGM is determined by
whether the result of evaluating EXPR is logical or numeric, but the optional
TYPE can be used to override by specifying a scalar of the type involved
(e.g., TRUE for binary and 1 for valued).

basis See ergm().

Details

Curvature is checked by testing if all model parameters are canonical.

is.dyad.independent 193

Value

TRUE if the object represents a curved exponential family; FALSE otherwise.

is.dyad.independent Testing for dyad-independence

Description

These functions test whether an ERGM fit, a formula, or some other object represents a dyad-
independent model.

The method for NULL always returns TRUE by convention.

Usage

is.dyad.independent(object, ...)

S3 method for class '`NULL`'
is.dyad.independent(object, ...)

S3 method for class 'formula'
is.dyad.independent(object, response = NULL, basis = NULL, ...)

S3 method for class 'ergm_conlist'
is.dyad.independent(object, object.obs = NULL, ...)

S3 method for class 'ergm'
is.dyad.independent(object, how = c("overall", "terms", "space"), ...)

Arguments

object The object to be tested for dyadic independence.

... Unused at this time.

response Either a character string, a formula, or NULL (the default), to specify the response
attributes and whether the ERGM is binary or valued. Interpreted as follows:

NULL Model simple presence or absence, via a binary ERGM.
character string The name of the edge attribute whose value is to be modeled.

Type of ERGM will be determined by whether the attribute is logical
(TRUE/FALSE) for binary or numeric for valued.

a formula must be of the form NAME~EXPR|TYPE (with | being literal). EXPR is
evaluated in the formula’s environment with the network’s edge attributes
accessible as variables. The optional NAME specifies the name of the edge
attribute into which the results should be stored, with the default being a
concise version of EXPR. Normally, the type of ERGM is determined by
whether the result of evaluating EXPR is logical or numeric, but the optional
TYPE can be used to override by specifying a scalar of the type involved
(e.g., TRUE for binary and 1 for valued).

194 is.valued

basis See ergm().

object.obs For the ergm_conlist method, the observed data constraint.

how one of "overall" (the default), "terms", or "space", to specify which aspect
of the ERGM is to be tested for dyadic independence.

Details

Dyad independence is determined by checking if all of the constituent parts of the object (formula,
ergm terms, constraints, etc.) are flagged as dyad-independent.

Value

TRUE if the model implied by the object is dyad-independent; FALSE otherwise.

is.valued Function to check whether an ERGM fit or some aspect of it is valued

Description

Function to check whether an ERGM fit or some aspect of it is valued

Usage

is.valued(object, ...)

S3 method for class 'ergm_state'
is.valued(object, ...)

S3 method for class 'edgelist'
is.valued(object, ...)

S3 method for class 'ergm'
is.valued(object, ...)

S3 method for class 'network'
is.valued(object, ...)

Arguments

object the object to be tested.

... additional arguments for methods, currently unused.

isolatededges-ergmTerm 195

Methods (by class)

• is.valued(ergm_state): a method for ergm_state objects.
• is.valued(edgelist): a method for edgelist objects.
• is.valued(ergm): a method for ergm objects.
• is.valued(network): a method for network objects that tests whether the network has been

instrumented with a valued %ergmlhs% "response" specification, typically by ergm_preprocess_response().
Note that it is not a test for whether a network has edge attributes. This method is primarily
for internal use.

isolatededges-ergmTerm

Isolated edges

Description

This term adds one statistic to the model equal to the number of isolated edges in the network,
i.e., the number of edges each of whose endpoints has degree 1. This term can only be used with
undirected networks.

Usage

binary: isolatededges

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: bipartite, undirected, binary

isolates-ergmTerm Isolates

Description

This term adds one statistic to the model equal to the number of isolates in the network. For an
undirected network, an isolate is defined to be any node with degree zero. For a directed network,
an isolate is any node with both in-degree and out-degree equal to zero.

Usage

binary: isolates

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, frequently-used, undirected, binary

196 kapferer

istar-ergmTerm In-stars

Description

This term adds one network statistic to the model for each element in k . The i th such statistic
counts the number of distinct k[i] -instars in the network, where a k -instar is defined to be a node
N and a set of k different nodes {O1, . . . , Ok} such that the ties (Oj→N) exist for j = 1, . . . , k
. This term can only be used for directed networks; for undirected networks see kstar . Note that
istar(1) is equal to both ostar(1) and edges .

Usage

binary: istar(k, attr=NULL, levels=NULL)

Arguments

k a vector of distinct integers

attr, levels a vertex attribute specification; if attr is specified, then the count is over the
instances where all nodes involved have the same value of the attribute. levels
specified which values of attr are included in the count. (See Specifying Vertex
attributes and Levels (?nodal_attributes) for details.)

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, directed, binary

kapferer Kapferer’s tailor shop data

Description

This well-known social network dataset, collected by Bruce Kapferer in Zambia from June 1965 to
August 1965, involves interactions among workers in a tailor shop as observed by Kapferer himself.

Usage

data(kapferer)

Format

Two network objects, kapferer and kapferer2. The kapferer dataset contains only the 39 indi-
viduals who were present at both data-collection time periods. However, these data only reflect data
collected during the first period. The individuals’ names are included as a nodal covariate called
names.

kstar-ergmTerm 197

Details

An interaction is defined by Kapferer as "continuous uninterrupted social activity involving the
participation of at least two persons"; only transactions that were relatively frequent are recorded.
All of the interactions in this particular dataset are "sociational", as opposed to "instrumental".
Kapferer explains the difference (p. 164) as follows:

"I have classed as transactions which were sociational in content those where the activity was
markedly convivial such as general conversation, the sharing of gossip and the enjoyment of a drink
together. Examples of instrumental transactions are the lending or giving of money, assistance at
times of personal crisis and help at work."

Kapferer also observed and recorded instrumental transactions, many of which are unilateral (di-
rected) rather than reciprocal (undirected), though those transactions are not recorded here. In
addition, there was a second period of data collection, from September 1965 to January 1966, but
these data are also not recorded here. All data are given in Kapferer’s 1972 book on pp. 176-179.

During the first time period, there were 43 individuals working in this particular tailor shop; how-
ever, the better-known dataset includes only those 39 individuals who were present during both time
collection periods. (Missing are the workers named Lenard, Peter, Lazarus, and Laurent.) Thus,
we give two separate network datasets here: kapferer is the well-known 39-individual dataset,
whereas kapferer2 is the full 43-individual dataset.

Source

Original source: Kapferer, Bruce (1972), Strategy and Transaction in an African Factory, Manch-
ester University Press.

kstar-ergmTerm k-stars

Description

This term adds one network statistic to the model for each element in k . The i th such statistic
counts the number of distinct k[i] -stars in the network, where a k -star is defined to be a node N
and a set of k different nodes {O1, . . . , Ok} such that the ties {N,Oi} exist for i = 1, . . . , k . This
term can only be used for undirected networks; for directed networks, see istar , ostar , twopath
and m2star . Note that kstar(1) is equal to edges .

Usage

binary: kstar(k, attr=NULL, levels=NULL)

Arguments

k a vector of distinct integers

attr, levels a vertex attribute specification; if attr is specified, then the count is over the
instances where all nodes involved have the same value of the attribute. levels
specified which values of attr are included in the count. (See Specifying Vertex
attributes and Levels (?nodal_attributes) for details.)

198 Label-ergmTerm

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, undirected, binary

Label-ergmTerm Modify terms’ coefficient names

Description

This operator evaluates formula without modification, but modifies its coefficient and/or parameter
names based on label and pos .

Usage

binary: Label(formula, label, pos)

valued: Label(formula, label, pos)

Arguments

formula a one-sided ergm()-style formula with the terms to be evaluated

label a character vector specifying the label for the terms, a list of two character
vectors (see Details), or a function through which term names are mapped (or a
as_mapper -style formula).

pos controls how label modifies the term names: one of "prepend" , "replace" ,
"append" , or "(" , with the latter wrapping the term names in parentheses like
a function call with name specified by label .

Details

If pos == "replace":

• Elements for which is.na(label) == TRUE are preserved.

• If the model is curved, label= can be a either function/mapper or a list with two elements,
the first element giving the curved (model) parameter names and second giving the canonical
parameter names. NULL leaves the respective name unchanged.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: operator, binary, valued

localtriangle-ergmTerm 199

localtriangle-ergmTerm

Triangles within neighborhoods

Description

This term adds one statistic to the model equal to the number of triangles in the network between
nodes "close to" each other. For an undirected network, a local triangle is defined to be any set
of three edges between nodal pairs {(i, j), (j, k), (k, i)} that are in the same neighborhood. For a
directed network, a triangle is defined as any set of three edges (i→j), (j→k) and either (k→i) or
(k←i) where again all nodes are within the same neighborhood.

Usage

binary: localtriangle(x)

Arguments

x an undirected network or an symmetric adjacency matrix that specifies whether
the two nodes are in the same neighborhood. Note that triangle , with or
without an argument, is a special case of localtriangle .

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical dyadic attribute, directed, triad-related, undirected, binary

Log-ergmTerm Take a natural logarithm of a network’s statistic

Description

Evaluate the terms specified in formula and takes a natural (base e) logarithm of them. Since an
ERGM statistic must be finite, log0 specifies the value to be substituted for log(0) . The default
value seems reasonable for most purposes.

Usage

binary: Log(formula, log0=-1/sqrt(.Machine$double.eps))

valued: Log(formula, log0=-1/sqrt(.Machine$double.eps))

Arguments

formula a one-sided ergm()-style formula with the terms to be evaluated
log0 the value to be substituted for log(0)

200 logLik.ergm

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: operator, binary, valued

logLik.ergm A logLik() method for ergm fits.

Description

A function to return the log-likelihood associated with an ergm fit, evaluating it if necessary. If the
log-likelihood was not computed for object, produces an error unless eval.loglik=TRUE.

Usage

S3 method for class 'ergm'
logLik(
object,
add = FALSE,
force.reeval = FALSE,
eval.loglik = add || force.reeval,
control = control.logLik.ergm(),
...,
verbose = FALSE

)

S3 method for class 'ergm'
deviance(object, ...)

S3 method for class 'ergm'
AIC(object, ..., k = 2)

S3 method for class 'ergm'
BIC(object, ...)

Arguments

object An ergm fit, returned by ergm().

add Logical: If TRUE, instead of returning the log-likelihood, return object with
log-likelihood value (and the null likelihood value) set.

force.reeval Logical: If TRUE, reestimate the log-likelihood even if object already has an
estiamte.

eval.loglik Logical: If TRUE, evaluate the log-likelihood if not set on object.

logLik.ergm 201

control A list of control parameters for algorithm tuning, typically constructed with
control.logLik.ergm(). Its documentation gives the the list of recognized
control parameters and their meaning. The more generic utility snctrl() (Stat-
Net ConTRoL) also provides argument completion for the available control
functions and limited argument name checking.

... Other arguments to the likelihood functions.

verbose A logical or an integer to control the amount of progress and diagnostic in-
formation to be printed. FALSE/0 produces minimal output, with higher values
producing more detail. Note that very high values (5+) may significantly slow
down processing.

k see help for AIC().

Value

The form of the output of logLik.ergm depends on add: add=FALSE (the default), a logLik object.
If add=TRUE (the default), an ergm object with the log-likelihood set.

As of version 3.1, all likelihoods for which logLikNull is not implemented are computed relative
to the reference measure. (I.e., a null model, with no terms, is defined to have likelihood of 0, and
all other models are defined relative to that.)

Functions

• deviance(ergm): A deviance() method.

• AIC(ergm): An AIC() method.

• BIC(ergm): A BIC() method.

References

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics.

See Also

logLik(), logLikNull(), ergm.bridge.llr(), ergm.bridge.dindstart.llk()

Examples

See help(ergm) for a description of this model. The likelihood will
not be evaluated.
data(florentine)
Not run:
The default maximum number of iterations is currently 20. We'll only
use 2 here for speed's sake.
gest <- ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle, eval.loglik=FALSE)

gest <- ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle, eval.loglik=FALSE,
control=control.ergm(MCMLE.maxit=2))

Log-likelihood is not evaluated, so no deviance, AIC, or BIC:
summary(gest)

202 logLikNull

Evaluate the log-likelihood and attach it to the object.

The default number of bridges is currently 20. We'll only use 3 here
for speed's sake.
gest.logLik <- logLik(gest, add=TRUE)

gest.logLik <- logLik(gest, add=TRUE, control=control.logLik.ergm(bridge.nsteps=3))
Deviances, AIC, and BIC are now shown:
summary(gest.logLik)
Null model likelihood can also be evaluated, but not for all constraints:
logLikNull(gest) # == network.dyadcount(flomarriage)*log(1/2)

End(Not run)

logLikNull Calculate the null model likelihood

Description

Calculate the null model likelihood

Usage

logLikNull(object, ...)

S3 method for class 'ergm'
logLikNull(object, control = control.logLik.ergm(), ...)

Arguments

object a fitted model.

... further arguments to lower-level functions.
logLikNull computes, when possible the log-probability of the data under the
null model (reference distribution).

control A list of control parameters for algorithm tuning, typically constructed with
control.logLik.ergm(). Its documentation gives the the list of recognized
control parameters and their meaning. The more generic utility snctrl() (Stat-
Net ConTRoL) also provides argument completion for the available control
functions and limited argument name checking.

Value

logLikNull returns an object of type logLik if it is able to compute the null model probability, and
NA otherwise.

m2star-ergmTerm 203

Methods (by class)

• logLikNull(ergm): A method for ergm fits; currently only implemented for binary ERGMs
with dyad-independent sample-space constraints.

m2star-ergmTerm Mixed 2-stars, a.k.a 2-paths

Description

This term adds one statistic to the model, equal to the number of mixed 2-stars in the network,
where a mixed 2-star is a pair of distinct edges (i→j), (j→k) . A mixed 2-star is sometimes called
a 2-path because it is a directed path of length 2 from i to k via j . However, in the case of a 2-path
the focus is usually on the endpoints i and k , whereas for a mixed 2-star the focus is usually on
the midpoint j . This term can only be used with directed networks; for undirected networks see
kstar(2) . See also twopath .

Usage

binary: m2star

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, binary

mcmc.diagnostics Conduct MCMC diagnostics on a model fit

Description

This function prints diagnistic information and creates simple diagnostic plots for MCMC sampled
statistics produced from a fit.

Usage

mcmc.diagnostics(object, ...)

S3 method for class 'ergm'
mcmc.diagnostics(
object,
center = TRUE,
esteq = TRUE,
vars.per.page = 3,
which = c("plots", "texts", "summary", "autocorrelation", "crosscorrelation", "burnin"),
compact = FALSE,
...

)

204 mcmc.diagnostics

Arguments

object A model fit object to be diagnosed.

... Additional arguments, to be passed to plotting functions.

center Logical: If TRUE, center the samples on the observed statistics.

esteq Logical: If TRUE, for statistics corresponding to curved ERGM terms, summa-
rize the curved statistics by their negated estimating function values (evaluated
at the MLE of any curved parameters) (i.e., η′I(θ̂) · (gI(Y)− gI(y)) for I being
indices of the canonical parameters in question), rather than the canonical (suf-
ficient) vectors of the curved statistics relative to the observed (gI(Y)− gI(y)).

vars.per.page Number of rows (one variable per row) per plotting page. Ignored if latticeEx-
tra package is not installed.

which A character vector specifying which diagnostics to plot and/or print. Defaults to
all of the below if meaningful:

"plots" Traceplots and density plots of sample values for all statistic or esti-
mating function elements.

"texts" Shorthand for the following text diagnostics.
"summary" Summary of network statistic or estimating function elements as

produced by coda::summary.mcmc.list().
"autocorrelation" Autocorrelation of each of the network statistic or esti-

mating function elements.
"crosscorrelation" Cross-correlations between each pair of the network statis-

tic or estimating function elements.
"burnin" Burn-in diagnostics, in particular, the Geweke test.

Partial matching is supported. (E.g., which=c("auto","cross") will print au-
tocorrelation and cross-correlations.)

compact Numeric: For diagnostics that print variables in columns (e.g. correlations, hy-
pothesis test p-values), try to abbreviate variable names to this many characters
and round the numbers to compact - 2 digits after the decimal point; 0 or FALSE
for no abbreviation.

Details

A pair of plots are produced for each statistic:a trace of the sampled output statistic values on the
left and density estimate for each variable in the MCMC chain on the right. Diagnostics printed to
the console include correlations and convergence diagnostics.

For ergm() specifically, recent changes in the estimation algorithm mean that these plots can no
longer be used to ensure that the mean statistics from the model match the observed network statis-
tics. For that functionality, please use the GOF command: gof(object, GOF=~model).

In fact, an ergm() output object contains the sample of statistics from the last MCMC run as element
$sample. If missing data MLE is fit, the corresponding element is named $sample.obs. These are
objects of mcmc and can be used directly in the coda package to assess MCMC convergence.

More information can be found by looking at the documentation of ergm().

https://CRAN.R-project.org/package=latticeExtra
https://CRAN.R-project.org/package=latticeExtra
https://CRAN.R-project.org/package=coda

meandeg-ergmTerm 205

Methods (by class)

• mcmc.diagnostics(ergm):

References

Raftery, A.E. and Lewis, S.M. (1995). The number of iterations, convergence diagnostics and
generic Metropolis algorithms. In Practical Markov Chain Monte Carlo (W.R. Gilks, D.J. Spiegel-
halter and S. Richardson, eds.). London, U.K.: Chapman and Hall.

See Also

ergm(), network package, coda package, summary.ergm()

Examples

Not run:
#
data(florentine)
#
test the mcmc.diagnostics function
#
gest <- ergm(flomarriage ~ edges + kstar(2))
summary(gest)

#
Plot the probabilities first
#
mcmc.diagnostics(gest)
#
Use coda directly
#
library(coda)
#
plot(gest$sample, ask=FALSE)
#
A full range of diagnostics is available
using codamenu()
#

End(Not run)

meandeg-ergmTerm Mean vertex degree

Description

This term adds one network statistic to the model equal to the average degree of a node. Note that
this term is a constant multiple of both edges and density .

https://CRAN.R-project.org/package=network
https://CRAN.R-project.org/package=coda

206 mm-ergmTerm

Usage

binary: meandeg

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, dyad-independent, undirected, binary

mm-ergmTerm Mixing matrix cells and margins

Description

attrs is the rows of the mixing matrix and whose RHS gives that for its columns (which may be
different). A one-sided formula (e.g., ~A) is symmetrized (e.g., A~A). A two-sided formula with
a dot on one side calculates the margins of the mixing matrix, analogously to nodefactor , with
A~. calculating the row/sender/b1 margins and .~A calculating the column/receiver/b2 margins. If
row and column attributes are the same and the network is undirected, only the cells at or above the
diagonal (where row ≤ column) will be calculated.

Usage

binary: mm(attrs, levels=NULL, levels2=-1)

valued: mm(attrs, levels=NULL, levels2=-1, form="sum")

Arguments

attrs a two-sided formula whose LHS gives the attribute or attribute function (see
Specifying Vertex attributes and Levels (?nodal_attributes) for details.) for
the rows of the mixing matrix and whose RHS gives for its columns. A one-
sided formula (e.g., ~A) is symmetrized (e.g., A~A)

levels subset of rows and columns to be used. (See Specifying Vertex attributes and
Levels (?nodal_attributes) for details.)

levels2 which specific cells of the matrix to include; ?nodal_attributes for details

form character how to aggregate tie values in a valued ERGM

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, directed, dyad-independent, frequently-used, undirected,
binary, valued

molecule 207

molecule Synthetic network with 20 nodes and 28 edges

Description

This is a synthetic network of 20 nodes that is used as an example within the ergm() documentation.
It has an interesting elongated shape

• reminencent of a chemical molecule. It is stored as a network object.

Usage

data(molecule)

See Also

florentine, sampson, network, plot.network, ergm

mutual-ergmTerm Mutuality

Description

In binary ERGMs, equal to the number of pairs of actors i and j for which (i→j) and (j→i) both
exist. For valued ERGMs, equal to

∑
i<j m(yi,j , yj,i) , where m is determined by form argument:

"min" for min(yi,j , yj,i) , "nabsdiff" for −|yi,j , yj,i| , "product" for yi,jyj,i , and "geometric"
for √yi,j

√
yj,i . See Krivitsky (2012) for a discussion of these statistics. form="threshold"

simply computes the binary mutuality after thresholding at threshold .

This term can only be used with directed networks.

Usage

binary: mutual(same=NULL, by=NULL, diff=FALSE, keep=NULL, levels=NULL)

valued: mutual(form="min",threshold=0)

Arguments

same if the optional argument is passed (see Specifying Vertex attributes and Levels
(?nodal_attributes) for details), only mutual pairs that match on the attribute
are counted; separate counts for each unique matching value can be obtained
by using diff=TRUE with same. Only one of same or by may be used. If both
parameters are used, by is ignored. This paramer is affected by diff.

208 nearsimmelian-ergmTerm

by if the optional argument is passed (see Specifying Vertex attributes and Lev-
els (?nodal_attributes) for details), then each node is counted separately for
each mutual pair in which it occurs and the counts are tabulated by unique val-
ues of the attribute. This means that the sum of the mutual statistics when by is
used will equal twice the standard mutual statistic. Only one of same or by may
be used. If both parameters are used, by is ignored. This paramer is not affected
by diff.

keep deprecated

levels which statistics should be kept whenever the mutual term would ordinarily re-
sult in multiple statistics. (See Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

form character how to aggregate tie values in a valued ERGM

Note

The argument keep is retained for backwards compatibility and may be removed in a future version.
When both keep and levels are passed, levels overrides keep.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, frequently-used, binary, valued

nearsimmelian-ergmTerm

Near simmelian triads

Description

This term adds one statistic to the model equal to the number of near Simmelian triads, as defined
by Krackhardt and Handcock (2007). This is a sub-graph of size three which is exactly one tie short
of being complete.

Usage

binary: nearsimmelian

Note

This term can only be used with directed networks.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, triad-related, binary

network.list 209

network.list A convenience container for a list of network objects, output by
simulate.ergm() among others.

Description

A convenience container for a list of network objects, output by simulate.ergm() among others.

Usage

network.list(object, ...)

S3 method for class 'network.list'
print(x, stats.print = FALSE, ...)

S3 method for class 'network.list'
summary(
object,
stats.print = TRUE,
net.print = FALSE,
net.summary = FALSE,
...

)

Arguments

object, x a list of networks or a network.list object.

... for network.list, additional attributes to be set on the network list; for others,
arguments passed down to lower-level functions.

stats.print Logical: If TRUE, print network statistics.

net.print Logical: If TRUE, print network overviews.

net.summary Logical: If TRUE, print network summaries.

Methods (by generic)

• print(network.list): A print() method for network lists.

• summary(network.list): A summary() method for network lists.

See Also

simulate.ergm()

210 nodal_attributes

Examples

Draw from a Bernoulli model with 16 nodes
and tie probability 0.1
#
g.use <- network(16, density=0.1, directed=FALSE)
#
Starting from this network let's draw 3 realizations
of a model with edges and 2-star terms
#
g.sim <- simulate(~edges+kstar(2), nsim=3, coef=c(-1.8, 0.03),

basis=g.use, control=control.simulate(
MCMC.burnin=100000,
MCMC.interval=1000))

print(g.sim)
summary(g.sim)

nodal_attributes Specifying nodal attributes and their levels

Description

This document describes the ways to specify nodal attributes or functions of nodal attributes and
which levels for categorical factors to include. For the helper functions to facilitate this, see
nodal_attributes-API.

Usage

LARGEST(l, a)

SMALLEST(l, a)

COLLAPSE_SMALLEST(object, n, into)

Arguments

object, l, a, n, into
COLLAPSE_SMALLEST, LARGEST, and SMALLEST are technically functions but they
are generally not called in a standard fashion but rather as a part of an vertex
attribute specification or a level specification as described below. The above
usage examples are needed to pass R’s package checking without warnings;
please disregard them, and refer to the sections and examples below instead.

Specifying nodal attributes

Term nodal attribute arguments, typically called attr, attrs, by, or on are interpreted as follows:

a character string Extract the vertex attribute with this name.

nodal_attributes 211

a character vector of length > 1 Extract the vertex attributes and paste them together, separated
by dots if the term expects categorical attributes and (typically) combine into a covariate ma-
trix if it expects quantitative attributes.

a function The function is called on the LHS network and additional arguments to ergm_get_vattr(),
expected to return a vector or matrix of appropriate dimension. (Shorter vectors and matrix
columns will be recycled as needed.)

a formula The expression on the RHS of the formula is evaluated in an environment of the ver-
tex attributes of the network, expected to return a vector or matrix of appropriate dimension.
(Shorter vectors and matrix columns will be recycled as needed.) Within this expression, the
network itself accessible as either . or .nw. For example, nodecov(~abs(Grade-mean(Grade))/network.size(.))
would return the absolute difference of each actor’s "Grade" attribute from its network-wide
mean, divided by the network size.

an AsIs object created by I() Use as is, checking only for correct length and type.

Any of these arguments may also be wrapped in or piped through COLLAPSE_SMALLEST(attr, n,
into) or, attr %>% COLLAPSE_SMALLEST(n, into), a convenience function that will transform the
attribute by collapsing the smallest n categories into one, naming it into. Note that into must be
of the same type (numeric, character, etc.) as the vertex attribute in question. If there are ties for
nth smallest category, they will be broken in lexicographic order, and a warning will be issued.

The name the nodal attribute receives in the statistic can be overridden by setting a an attr()-style
attribute "name".

Specifying categorical attribute levels and their ordering

For categorical attributes, to select which levels are of interest and their ordering, use the argument
levels. Selection of nodes (from the appropriate vector of nodal indices) is likewise handled as the
selection of levels, using the argument nodes. These arguments are interpreted as follows:

an expression wrapped in I() Use the given list of levels as is.

a numeric or logical vector Used for indexing of a list of all possible levels (typically, unique val-
ues of the attribute) in default older (typically lexicographic), i.e., sort(unique(attr))[levels].
In particular, levels=TRUE will retain all levels. Negative values exclude. Another special
value is LARGEST, which will refer to the most frequent category, so, say, to set such a cat-
egory as the baseline, pass levels=-LARGEST. In addition, LARGEST(n) will refer to the n
largest categories. SMALLEST works analogously. If there are ties in frequencies, they will be
broken in lexicographic order, and a warning will be issued. To specify numeric or logical
levels literally, wrap in I().

NULL Retain all possible levels; usually equivalent to passing TRUE.

a character vector Use as is.

a function The function is called on the list of unique values of the attribute, the values of the at-
tribute themselves, and the network itself, depending on its arity. Its return value is interpreted
as above.

a formula The expression on the RHS of the formula is evaluated in an environment in which the
network itself is accessible as .nw, the list of unique values of the attribute as . or as .levels,
and the attribute vector itself as .attr. Its return value is interpreted as above.

212 nodal_attributes

a matrix For mixing effects (i.e., level2= arguments), a matrix can be used to select elements
of the mixing matrix, either by specifying a logical (TRUE and FALSE) matrix of the same
dimension as the mixing matrix to select the corresponding cells or a two-column numeric
matrix indicating giving the coordinates of cells to be used.

Note that levels, nodes, and others often have a default that is sensible for the term in question.

Examples

library(magrittr) # for %>%

data(faux.mesa.high)

Activity by grade with a baseline grade excluded:
summary(faux.mesa.high~nodefactor(~Grade))
Name overrides:
summary(faux.mesa.high~nodefactor("Form"~Grade)) # Only for terms that don't use the LHS.
summary(faux.mesa.high~nodefactor(~structure(Grade,name="Form")))
Retain all levels:
summary(faux.mesa.high~nodefactor(~Grade, levels=TRUE)) # or levels=NULL
Use the largest grade as baseline (also Grade 7):
summary(faux.mesa.high~nodefactor(~Grade, levels=-LARGEST))
Activity by grade with no baseline smallest two grades (11 and
12) collapsed into a new category, labelled 0:
table(faux.mesa.high %v% "Grade")
summary(faux.mesa.high~nodefactor((~Grade) %>% COLLAPSE_SMALLEST(2, 0),

levels=TRUE))

Handling of tied frequencies
faux.mesa.high %v% "Plans" <-

sample(rep(c("College", "Trade School", "Apprenticeship", "Undecided"), c(80,80,20,25)))
summary(faux.mesa.high ~ nodefactor("Plans", levels = -LARGEST))

Mixing between lower and upper grades:
summary(faux.mesa.high~mm(~Grade>=10))
Mixing between grades 7 and 8 only:
summary(faux.mesa.high~mm("Grade", levels=I(c(7,8))))
or
summary(faux.mesa.high~mm("Grade", levels=1:2))
or using levels2 (see ? mm) to filter the combinations of levels,
summary(faux.mesa.high~mm("Grade",

levels2=~sapply(.levels,
function(l)

l[[1]]%in%c(7,8) && l[[2]]%in%c(7,8))))

Here are some less complex ways to specify levels2. This is the
full list of combinations of sexes in an undirected network:
summary(faux.mesa.high~mm("Sex", levels2=TRUE))
Select only the second combination:
summary(faux.mesa.high~mm("Sex", levels2=2))
Equivalently,
summary(faux.mesa.high~mm("Sex", levels2=-c(1,3)))
or

nodecov-ergmTerm 213

summary(faux.mesa.high~mm("Sex", levels2=c(FALSE,TRUE,FALSE)))
Select all *but* the second one:
summary(faux.mesa.high~mm("Sex", levels2=-2))
Select via a mixing matrix: (Network is undirected and
attributes are the same on both sides, so we can use either M or
its transpose.)
(M <- matrix(c(FALSE,TRUE,FALSE,FALSE),2,2))
summary(faux.mesa.high~mm("Sex", levels2=M)+mm("Sex", levels2=t(M)))
Select via an index of a cell:
idx <- cbind(1,2)
summary(faux.mesa.high~mm("Sex", levels2=idx))
Or, select by specific attribute value combinations, though note
the names 'row' and 'col' and the order for undirected networks:
summary(faux.mesa.high~mm("Sex",

levels2 = I(list(list(row="M",col="M"),
list(row="M",col="F"),
list(row="F",col="M")))))

Note the warning: in an undirected network with identical row and
column attributes, the mixing matrix is symmetric and only the
upper triangle (where row < column) is valid, so the [M,F] cell
will get a statistic of 0 with a warning.

mm() term allows two-sided attribute formulas with different attributes:
summary(faux.mesa.high~mm(Grade~Race, levels2=TRUE))
It is possible to have collapsing functions in the formula; note
the parentheses around "~Race": this is because a formula
operator (~) has lower precedence than pipe (|>):
summary(faux.mesa.high~mm(Grade~(~Race) %>% COLLAPSE_SMALLEST(3,"BWO"), levels2=TRUE))

Some terms, such as nodecov(), accept matrices of nodal
covariates. An certain R quirk means that columns whose
expressions are not typical variable names have their names
dropped and need to be adjusted. Consider, for example, the
linear and quadratic effects of grade:
Grade <- faux.mesa.high %v% "Grade"
colnames(cbind(Grade, Grade^2)) # Second column name missing.
colnames(cbind(Grade, Grade2=Grade^2)) # Can be set manually,
colnames(cbind(Grade, `Grade^2`=Grade^2)) # even to non-variable-names.
colnames(cbind(Grade, Grade^2, deparse.level=2)) # Alternatively, deparse.level=2 forces naming.
rm(Grade)

Therefore, the nodal attribute names are set as follows:
summary(faux.mesa.high~nodecov(~cbind(Grade, Grade^2))) # column names dropped with a warning
summary(faux.mesa.high~nodecov(~cbind(Grade, Grade2=Grade^2))) # column names set manually
summary(faux.mesa.high~nodecov(~cbind(Grade, Grade^2, deparse.level=2))) # using deparse.level=2

Activity by grade with a random covariate. Note that setting an attribute "name" gives it a name:
randomcov <- structure(I(rbinom(network.size(faux.mesa.high),1,0.5)), name="random")
summary(faux.mesa.high~nodefactor(I(randomcov)))

nodecov-ergmTerm Main effect of a covariate

214 nodecovar-ergmTerm

Description

This term adds a single network statistic for each quantitative attribute or matrix column to the
model equaling the sum of attr(i) and attr(j) for all edges (i, j) in the network. For categor-
ical attributes, see nodefactor . Note that for directed networks, nodecov equals nodeicov plus
nodeocov .

Usage

binary: nodecov(attr)

binary: nodemain

valued: nodecov(attr, form="sum")

valued: nodemain(attr, form="sum")

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

form character how to aggregate tie values in a valued ERGM

Note

ergm versions 3.9.4 and earlier used different arguments for this term. See ergm-options for how
to invoke the old behaviour.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, dyad-independent, frequently-used, quantitative nodal attribute, undirected,
binary, valued

nodecovar-ergmTerm Covariance of undirected dyad values incident on each actor

Description

This term adds one statistic equal to
∑

i,j<k yi,jyi,k/(n − 2) . This can be viewed as a valued
analog of the star(2) statistic.

Usage

valued: nodecovar(center, transform)

nodefactor-ergmTerm 215

Arguments

center If center=TRUE , the y·,· s are centered by their mean over the whole network
before the calculation. Note that this makes the model non-local, but it may
alleviate multimodailty.

transform If transform="sqrt" , y·,· s are repaced by their square roots before the calcu-
lation. This makes sense for counts in particular. If center=TRUE as well, they
are centered by the mean of the square roots.

Note

Note that this term replaces nodesqrtcovar , which has been deprecated in favor of nodecovar(transform="sqrt")
.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, valued

nodefactor-ergmTerm Factor attribute effect

Description

This term adds multiple network statistics to the model, one for each of (a subset of) the unique
values of the attr attribute (or each combination of the attributes given). Each of these statistics
gives the number of times a node with that attribute or those attributes appears in an edge in the
network.

Usage

binary: nodefactor(attr, base=1, levels=-1)

valued: nodefactor(attr, base=1, levels=-1, form="sum")

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

base deprecated

levels this optional argument controls which levels of the attribute attributes and Levels
(?nodal_attributes) for details.)

form character how to aggregate tie values in a valued ERGM

216 nodeicov-ergmTerm

Note

To include all attribute values is usually not a good idea, because the sum of all such statistics equals
the number of edges and hence a linear dependency would arise in any model also including edges.
The default, levels=-1, is therefore to omit the first (in lexicographic order) attribute level. To
include all levels, pass either levels=TRUE (i.e., keep all levels) or levels=NULL (i.e., do not filter
levels).

The argument base is retained for backwards compatibility and may be removed in a future version.
When both base and levels are passed, levels overrides base.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, directed, dyad-independent, frequently-used, undirected,
binary, valued

nodeicov-ergmTerm Main effect of a covariate for in-edges

Description

This term adds a single network statistic for each quantitative attribute or matrix column to the
model equaling the total value of attr(j) for all edges (i, j) in the network. This term may only
be used with directed networks. For categorical attributes, see nodeifactor .

Usage

binary: nodeicov(attr)

valued: nodeicov(attr, form="sum")

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

form character how to aggregate tie values in a valued ERGM

Note

ergm versions 3.9.4 and earlier used different arguments for this term. See ergm-options for how
to invoke the old behaviour.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, frequently-used, quantitative nodal attribute, binary, valued

nodeicovar-ergmTerm 217

nodeicovar-ergmTerm Covariance of in-dyad values incident on each actor

Description

This term adds one statistic equal to
∑

i,j,k yj,iyk,i/(n−2) . This can be viewed as a valued analog
of the istar(2) statistic.

Usage

valued: nodeicovar(center, transform)

Arguments

center If center=TRUE , the y·,· s are centered by their mean over the whole network
before the calculation. Note that this makes the model non-local, but it may
alleviate multimodailty.

transform If transform="sqrt" , y·,· s are repaced by their square roots before the calcu-
lation. This makes sense for counts in particular. If center=TRUE as well, they
are centered by the mean of the square roots.

Note

Note that this term replaces nodeisqrtcovar , which has been deprecated in favor of nodeicovar(transform="sqrt")
.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, valued

nodeifactor-ergmTerm Factor attribute effect for in-edges

Description

This term adds multiple network statistics to the model, one for each of (a subset of) the unique
values of the attr attribute (or each combination of the attributes given). Each of these statistics
gives the number of times a node with that attribute or those attributes appears as the terminal node
of a directed tie.

For an analogous term for quantitative vertex attributes, see nodeicov .

218 nodematch-ergmTerm

Usage

binary: nodeifactor(attr, base=1, levels=-1)

valued: nodeifactor(attr, base=1, levels=-1, form="sum")

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

base deprecated
levels this optional argument controls which levels of the attribute attributes and Levels

(?nodal_attributes) for details.)
form character how to aggregate tie values in a valued ERGM

Note

To include all attribute values is usually not a good idea, because the sum of all such statistics equals
the number of edges and hence a linear dependency would arise in any model also including edges.
The default, levels=-1, is therefore to omit the first (in lexicographic order) attribute level. To
include all levels, pass either levels=TRUE (i.e., keep all levels) or levels=NULL (i.e., do not filter
levels).

The argument base is retained for backwards compatibility and may be removed in a future version.
When both base and levels are passed, levels overrides base.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, directed, dyad-independent, frequently-used, binary, val-
ued

nodematch-ergmTerm Uniform homophily and differential homophily

Description

When diff=FALSE , this term adds one network statistic to the model, which counts the num-
ber of edges (i, j) for which attr(i)==attr(j) . This is also called “uniform homophily”, be-
cause each group is assumed to have the same propensity for within-group ties. When multiple
attribute names are given, the statistic counts only ties for which all of the attributes match. When
diff=TRUE , p network statistics are added to the model, where p is the number of unique val-
ues of the attr attribute. The k th such statistic counts the number of edges (i, j) for which
attr(i) == attr(j) == value(k) , where value(k) is the k th smallest unique value of the
attr attribute. This is also called “differential homophily”, because each group is allowed to have
a unique propensity for within-group ties. Note that a statistical test of uniform vs. differential
homophily should be conducted using the ANOVA function.

By default, matches on all levels k are counted. This works for both diff=TRUE and diff=FALSE .

NodematchFilter-ergmTerm 219

Usage

binary: nodematch(attr, diff=FALSE, keep=NULL, levels=NULL)

valued: nodematch(attr, diff=FALSE, keep=NULL, levels=NULL, form="sum")

valued: match(attr, diff=FALSE, keep=NULL, levels=NULL, form="sum")

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

diff specify if the term has uniform or differential homophily

keep deprecated

levels this optional argument controls which levels of the attribute attributes and Levels
(?nodal_attributes) for details.)

form character how to aggregate tie values in a valued ERGM

Note

The argument keep is retained for backwards compatibility and may be removed in a future version.
When both keep and levels are passed, levels overrides keep.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, directed, dyad-independent, frequently-used, undirected,
binary, valued

NodematchFilter-ergmTerm

Filtering on nodematch

Description

Evaluates the terms specified in formula on a network constructed by taking y and removing any
edges for which attrname(i)!=attrname(j) .

Usage

binary: NodematchFilter(formula, attrname)

Arguments

formula formula to be evaluated

attrname a character vector giving one or more names of attributes in the network’s vertex
attribute list.

220 nodemix-ergmTerm

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: operator, binary

nodemix-ergmTerm Nodal attribute mixing

Description

By default, this term adds one network statistic to the model for each possible pairing of attribute
values. The statistic equals the number of edges in the network in which the nodes have that pairing
of values. (When multiple attributes are specified, a statistic is added for each combination of
attribute values for those attributes.) In other words, this term produces one statistic for every
entry in the mixing matrix for the attribute(s). By default, the ordering of the attribute values is
lexicographic: alphabetical (for nominal categories) or numerical (for ordered categories).

Usage

binary: nodemix(attr, base=NULL, b1levels=NULL, b2levels=NULL, levels=NULL, levels2=-1)

valued: nodemix(attr, base=NULL, b1levels=NULL, b2levels=NULL, levels=NULL,
levels2=-1, form="sum")

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

base deprecated
b1levels, b2levels, levels

control what statistics are included in the model and the order in which they ap-
pear. levels applies to unipartite networks; b1levels and b2levels apply to
bipartite networks (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details)

levels2 similar to the other levels arguments above and applies to all networks. Option-
ally allows a factor or character matrix to be specified to group certain levels.
Level combinations corresponding to NA are excluded. Combinations specified
by the same character or level will be grouped together and summarised by the
same statistic. If an empty string is specified, the level combinations will be un-
grouped. Only the upper triangle needs to be specified for undirected networks.
For example, levels2=matrix(c('A', '', NA, 'A'), 2, 2, byrow=TRUE) on
an undirected matrix will group homophilous ties while leaving ties between 1
and 2 ungrouped.

form character how to aggregate tie values in a valued ERGM

nodeocov-ergmTerm 221

Note

The argument base is retained for backwards compatibility and may be removed in a future version.
When both base and levels are passed, levels overrides base.

The argument base is retained for backwards compatibility and may be removed in a future version.
When both base and levels2 are passed, levels2 overrides base.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, directed, dyad-independent, frequently-used, undirected,
binary, valued

nodeocov-ergmTerm Main effect of a covariate for out-edges

Description

This term adds a single network statistic for each quantitative attribute or matrix column to the
model equaling the total value of attr(i) for all edges (i, j) in the network. This term may only
be used with directed networks. For categorical attributes, see nodeofactor .

Usage

binary: nodeocov(attr)

valued: nodeocov(attr, form="sum")

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

form character how to aggregate tie values in a valued ERGM

Note

ergm versions 3.9.4 and earlier used different arguments for this term. See ergm-options for how
to invoke the old behaviour.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, dyad-independent, quantitative nodal attribute, binary, valued

222 nodeofactor-ergmTerm

nodeocovar-ergmTerm Covariance of out-dyad values incident on each actor

Description

This term adds one statistic equal to
∑

i,j,k yi,jyi,k/(n−2) . This can be viewed as a valued analog
of the ostar(2) statistic.

Usage

valued: nodeocovar(center, transform)

Arguments

center whether the y·,· s are centered by their mean over the whole network before
the calculation. Note that this makes the model non-local, but it may alleviate
multimodailty.

transform if transform="sqrt" , y·,· s are repaced by their square roots before the calcu-
lation. This makes sense for counts in particular. If center=TRUE as well, they
are centered by the mean of the square roots.

Note

Note that this term replaces nodeosqrtcovar , which has been deprecated in favor of nodeocovar(transform="sqrt")
.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, valued

nodeofactor-ergmTerm Factor attribute effect for out-edges

Description

This term adds multiple network statistics to the model, one for each of (a subset of) the unique
values of the attr attribute (or each combination of the attributes given). Each of these statistics
gives the number of times a node with that attribute or those attributes appears as the node of origin
of a directed tie.

Usage

binary: nodeofactor(attr, base=1, levels=-1)

valued: nodeofactor(attr, base=1, levels=-1, form="sum")

nparam 223

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

base deprecated

levels this optional argument controls which levels of the attribute attributes and Levels
(?nodal_attributes) for details.)

form character how to aggregate tie values in a valued ERGM

Note

The argument base is retained for backwards compatibility and may be removed in a future version.
When both base and levels are passed, levels overrides base.

To include all attribute values is usually not a good idea, because the sum of all such statistics equals
the number of edges and hence a linear dependency would arise in any model also including edges.
The default, levels=-1, is therefore to omit the first (in lexicographic order) attribute level. To
include all levels, pass either levels=TRUE (i.e., keep all levels) or levels=NULL (i.e., do not filter
levels).

This term can only be used with directed networks.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, directed, dyad-independent, binary, valued

nparam Length of the parameter vector associated with an object or with its
terms.

Description

This is a generic that returns the number of parameters associated with a model or a model fit.

Usage

nparam(object, ...)

Default S3 method:
nparam(object, ...)

S3 method for class 'ergm'
nparam(object, offset = NA, ...)

224 nsp-ergmTerm

Arguments

object An object for which number of parameters is defined.

... Additional arguments to methods.

offset If NA (the default), all model terms are counted; if TRUE, only offset terms are
counted; and if FALSE, offset terms are skipped.

Methods (by class)

• nparam(default): By default, the length of the coef() vector is returned.

• nparam(ergm): A method to return the number of parameters of an ergm fit.

nsp-ergmTerm Directed non-edgewise shared partners

Description

This term adds one network statistic to the model for each element in d where the i th such statistic
equals the number of non-edges in the network with exactly d[i] shared partners.

Usage

binary: dnsp(d, type="OTP")

binary: nsp(d, type="OTP")

Arguments

d a vector of distinct integers

type A string indicating the type of shared partner or path to be considered for di-
rected networks: "OTP" (default for directed), "ITP", "RTP", "OSP", and "ISP";
has no effect for undirected. See the section below on Shared partner types for
details.

Shared partner types

While there is only one shared partner configuration in the undirected case, nine distinct configura-
tions are possible for directed graphs, selected using the type argument. Currently, terms may be
defined with respect to five of these configurations; they are defined here as follows (using termi-
nology from Butts (2008) and the relevent package):

• Outgoing Two-path ("OTP"): vertex k is an OTP shared partner of ordered pair (i, j) iff i →
k → j. Also known as "transitive shared partner".

• Incoming Two-path ("ITP"): vertex k is an ITP shared partner of ordered pair (i, j) iff j →
k → i. Also known as "cyclical shared partner"

• Reciprocated Two-path ("RTP"): vertex k is an RTP shared partner of ordered pair (i, j) iff
i↔ k ↔ j.

observed-ergmConstraint 225

• Outgoing Shared Partner ("OSP"): vertex k is an OSP shared partner of ordered pair (i, j) iff
i→ k, j → k.

• Incoming Shared Partner ("ISP"): vertex k is an ISP shared partner of ordered pair (i, j) iff
k → i, k → j.

By default, outgoing two-paths ("OTP") are calculated. Note that Robins et al. (2009) define closely
related statistics to several of the above, using slightly different terminology.

Note

This term takes an additional term option (see options?ergm), cache.sp, controlling whether the
implementation will cache the number of shared partners for each dyad in the network; this is
usually enabled by default.

This term can only be used with directed networks.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, binary

observed-ergmConstraint

Preserve the observed dyads of the given network

Description

Preserve the observed dyads of the given network.

Usage

observed

See Also

ergmConstraint for index of constraints and hints currently visible to the package.

Keywords: directed, dyad-independent, undirected

226 odegrange-ergmTerm

odegrange-ergmTerm Out-degree range

Description

This term adds one network statistic to the model for each element of from (or to); the i th such
statistic equals the number of nodes in the network of out-degree greater than or equal to from[i]
but strictly less than to[i] , i.e. with out-edge count in semiopen interval [from,to) .

This term can only be used with directed networks; for undirected networks (bipartite and not) see
degrange . For degrees of specific modes of bipartite networks, see b1degrange and b2degrange
. For in-degrees, see idegrange .

Usage

binary: odegrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL)

Arguments

from, to vectors of distinct integers. If one of the vectors have length 1, it is recycled to
the length of the other. Otherwise, it must have the same length.

by, levels, homophily
the optional argument by specifies a vertex attribute (see Specifying Vertex at-
tributes and Levels (?nodal_attributes) for details). If this is specified and
homophily is TRUE , then degrees are calculated using the subnetwork consist-
ing of only edges whose endpoints have the same value of the by attribute. If
by is specified and homophily is FALSE (the default), then separate degree range
statistics are calculated for nodes having each separate value of the attribute.
levels selects which levels of by‘ to include.

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, directed, binary

odegree-ergmTerm 227

odegree-ergmTerm Out-degree

Description

This term adds one network statistic to the model for each element in d ; the i th such statistic equals
the number of nodes in the network of out-degree d[i] , i.e. the number of nodes with exactly d[i]
out-edges. This term can only be used with directed networks; for undirected networks see degree
.

Usage

binary: odegree(d, by=NULL, homophily=FALSE, levels=NULL)

Arguments

d a vector of distinct integers
by, levels, homophily

the optional argument by specifies a vertex attribute (see Specifying Vertex at-
tributes and Levels (?nodal_attributes) for details). If this is specified and
homophily is TRUE , then degrees are calculated using the subnetwork consist-
ing of only edges whose endpoints have the same value of the by attribute. If
by is specified and homophily is FALSE (the default), then separate degree range
statistics are calculated for nodes having each separate value of the attribute.
levels selects which levels of by‘ to include.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, directed, frequently-used, binary

odegree1.5-ergmTerm Out-degree to the 3/2 power

Description

This term adds one network statistic to the model equaling the sum over the actors of each actor’s
outdegree taken to the 3/2 power (or, equivalently, multiplied by its square root). This term is
analogous to the term of Snijders et al. (2010), equation (12). This term can only be used with
directed networks.

Usage

binary: odegree1.5

228 odegrees-ergmConstraint

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, binary

odegreedist-ergmConstraint

Preserve the outdegree distribution

Description

Preserve the outdegree distribution of the given network.

Usage

odegreedist

See Also

ergmConstraint for index of constraints and hints currently visible to the package.

Keywords: directed

odegrees-ergmConstraint

Preserve outdegree for directed networks

Description

For directed networks, preserve the outdegree of each vertex of the given network, while allowing
indegree to vary

Usage

odegrees

See Also

ergmConstraint for index of constraints and hints currently visible to the package.

Keywords: directed

Offset-ergmTerm 229

Offset-ergmTerm Terms with fixed coefficients

Description

This operator is analogous to the offset() wrapper, but the coefficients are specified within the
term and the curved ERGM mechanism is used internally.

Usage

binary: Offset(formula, coef, which)

Arguments

formula a one-sided ergm()-style formula with the terms to be evaluated

coef coefficients to the formula

which used to specify which of the parameters in the formula are fixed. It can be a
logical vector (recycled as needed), a numeric vector of indices of parameters to
be fixed, or a character vector of parameter names.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: operator, binary

opentriad-ergmTerm Open triads

Description

This term adds one statistic to the model equal to the number of 2-stars minus three times the
number of triangles in the network. It is currently only implemented for undirected networks.

Usage

binary: opentriad

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: triad-related, undirected, binary

230 param_names

ostar-ergmTerm k-Outstars

Description

This term adds one network statistic to the model for each element in k . The i th such statistic counts
the number of distinct k[i] -outstars in the network, where a k -outstar is defined to be a node N
and a set of k different nodes {O1, . . . , Ok} such that the ties (N→Oj) exist for j = 1, . . . , k .
This term can only be used with directed networks; for undirected networks see kstar .

Usage

binary: ostar(k, attr=NULL, levels=NULL)

Arguments

k a vector of distinct integers
attr, levels a vertex attribute specification; if attr is specified, then the count is over the

instances where all nodes involved have the same value of the attribute. levels
specified which values of attr are included in the count. (See Specifying Vertex
attributes and Levels (?nodal_attributes) for details.)

Note

ostar(1) is equal to both istar(1) and edges .

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, directed, binary

param_names Names of the parameters associated with an object.

Description

This is a generic that returns a vector giving the names of the parameters associated with a model
or a model fit.

Usage

param_names(object, ...)

Default S3 method:
param_names(object, ...)

param_names(object, ...) <- value

predict.formula 231

Arguments

object An object for which parameter names are defined.

... Additional arguments to methods.

value Specification for the new parameter names.

Methods (by class)

• param_names(default): By default, the names of the coef() vector is returned.

Functions

• param_names(object, ...) <- value: a method for modifying parameter names of an ob-
ject.

predict.formula ERGM-based tie probabilities

Description

Calculate model-predicted conditional and unconditional tie probabilities for dyads in the given
network. Conditional probabilities of a dyad given the state of all the remaining dyads in the graph
are computed exactly. Unconditional probabilities are computed through simulating networks using
the given model. Currently there are two methods implemented:

• Method for formula objects requires (1) an ERGM model formula with an existing network
object on the left hand side and model terms on the right hand side, and (2) a vector of corre-
sponding parameter values.

• Method for ergm objects, as returned by ergm(), takes both the formula and parameter values
from the fitted model object.

Both methods can limit calculations to specific set of dyads of interest.

Usage

S3 method for class 'formula'
predict(
object,
theta,
conditional = TRUE,
type = c("response", "link"),
nsim = 100,
output = c("data.frame", "matrix"),
...

)

S3 method for class 'ergm'
predict(object, ...)

232 predict.formula

Arguments

object a formula or a fitted ERGM model object

theta numeric vector of ERGM model parameter values

conditional logical whether to compute conditional or unconditional predicted probabilities

type character element, one of "response" (default) or "link" - whether the re-
turned predictions are on the probability scale or on the scale of linear predictor.
This is similar to type argument of predict.glm().

nsim integer, number of simulated networks used for computing unconditional prob-
abilities. Defaults to 100.

output character, type of object returned. Defaults to "data.frame". See section Value
below.

... other arguments passed to/from other methods. For the predict.formula method,
if conditional=TRUE arguments are passed to ergmMPLE(). If conditional=FALSE
arguments are passed to simulate_formula().

Value

Type of object returned depends on the argument output. If output="data.frame" the function
will return a data frame with columns:

• tail, head – indices of nodes identifying a dyad

• p – predicted conditional tie probability

If output="matrix" the function will return an "adjacency matrix" with the predicted probabilities.
Diagonal values are 0s.

Examples

A three-node empty directed network
net <- network.initialize(3, directed=TRUE)

In homogeneous Bernoulli model with odds of a tie of 1/5 all ties are
equally likely
predict(net ~ edges, log(1/5))

Let's add a tie so that `net` has 1 tie out of possible 6 (so odds of 1/5)
net[1,2] <- 1

Fit the model
fit <- ergm(net ~ edges)

The p's should be identical
predict(fit)

Prod-ergmTerm 233

Prod-ergmTerm A product (or an arbitrary power combination) of one or more formu-
las

Description

This operator evaluates a list of formulas whose corresponnding RHS statistics will be multiplied
elementwise. They are required to be nonnegative.

Usage

binary: Prod(formulas, label)

valued: Prod(formulas, label)

Arguments

formulas a list (constructed using list() or c()) of ergm()-style formulas whose RHS
gives the statistics to be evaluated, or a single formula.
If a formula in the list has an LHS, it is interpreted as follows:

• a numeric scalar: Network statistics of this formula will be exponentiated
by this.

• a numeric vector: Corresponding network statistics of this formula will be
exponentiated by this.

• a numeric matrix: Vector of network statistics will be exponentiated by this
using the same pattern as matrix multiplication.

• a character string: One of several predefined multiplicative combinations.
Currently supported presets are as follows:

– "prod": Network statistics of this formula will be multiplied together;
equivalent to matrix(1,1,p) , where p is the length of the network
statistic vector.

– "geomean": Network statistics of this formula will be geometrically
averaged; equivalent to matrix(1/p,1,p) , where p is the length of
the network statistic vector.

label used to specify the names of the elements of the resulting term product vector. If
label is a character vector of length 1, it will be recycled with indices appended.
If a function is specified, formulas parameter names are extracted and their list
of character vectors is passed label.

Details

Note that each formula must either produce the same number of statistics or be mapped through a
matrix to produce the same number of statistics.

A single formula is also permitted. This can be useful if one wishes to, say, scale or multiply
together the statistics returned by a formula.

234 rank_test.ergm

Offsets are ignored unless there is only one formula and the transformation only scales the statistics
(i.e., the effective transformation matrix is diagonal).

Curved models are supported, subject to some limitations. In particular, the first model’s etamap
will be used, overwriting the others. If label is not of length 1, it should have an attr -style
attribute "curved" specifying the names for the curved parameters.

Note

The current implementation piggybacks on the Log , Exp , and Sum operators, essentially Exp(~Sum(~Log(formula),
label)) . This may result in loss of precision, particularly for extremely large or small statistics.
The implementation may change in the future.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: operator, binary, valued

rank_test.ergm A lack-of-fit test for ERGMs

Description

A simple test reporting the sample quantile of the observed network’s probability in the distribution
under the MLE. This is a conservative p-value for the null hypothesis of the observed network being
a draw from the distribution of interest.

Usage

rank_test.ergm(x, plot = FALSE)

Arguments

x an ergm() object.

plot if TRUE, plot the empirical distribution.

Value

The sample quantile of the observed network’s probability among the predicted.

receiver-ergmTerm 235

receiver-ergmTerm Receiver effect

Description

This term adds one network statistic for each node equal to the number of in-ties for that node. This
measures the popularity of the node. The term for the first node is omitted by default because of
linear dependence that arises if this term is used together with edges , but its coefficient can be
computed as the negative of the sum of the coefficients of all the other actors. That is, the average
coefficient is zero, following the Holland-Leinhardt parametrization of the p_1 model (Holland
and Leinhardt, 1981). This term can only be used with directed networks. For undirected networks,
see sociality .

Usage

binary: receiver(base=1, nodes=-1)

valued: receiver(base=1, nodes=-1, form="sum")

Arguments

base deprecated

nodes specify which nodes’ statistics should be included or excluded (see Specifying
Vertex attributes and Levels (?nodal_attributes) for details)

form character how to aggregate tie values in a valued ERGM

Note

The argument base is retained for backwards compatibility and may be removed in a future version.
When both base and nodes are passed, nodes overrides base.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, dyad-independent, binary, valued

236 samplk

S-ergmTerm Evaluation on an induced subgraph

Description

This operator takes a two-sided forumla attrs whose LHS gives the attribute or attribute function
for which tails and heads will be used to construct the induced subgraph. They must evaluate either
to a logical vector equal in length to the number of tails (for LHS) and heads (for RHS) indicating
which nodes are to be used to induce the subgraph or a numeric vector giving their indices.

Usage

binary: S(formula, attrs)

Arguments

formula a one-sided ergm()-style formula with the terms to be evaluated

attrs a two-sided formula to be used. A one-sided formula (e.g., ~A) is symmetrized
(e.g., A~A).

Details

As with indexing vectors, the logical vector will be recycled to the size of the network or the size
of the appropriate bipartition, and negative indices will deselect vertices.

When the two sets are identical, the induced subgraph retains the directedness of the original graph.
Otherwise, an undirected bipartite graph is induced.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: operator, binary

samplk Longitudinal networks of positive affection within a monastery as a
"network" object

Description

Three network objects containing the "liking" nominations of Sampson’s (1969) monks at the three
time points.

Usage

data(samplk)

samplk 237

Details

Sampson (1969) recorded the social interactions among a group of monks while he was a resident
as an experimenter at the cloister. During his stay, a political "crisis in the cloister" resulted in the
expulsion of four monks– namely, the three "outcasts," Brothers Elias, Simplicius, Basil, and the
leader of the "young Turks," Brother Gregory. Not long after Brother Gregory departed, all but
one of the "young Turks" left voluntarily: Brothers John Bosco, Albert, Boniface, Hugh, and Mark.
Then, all three of the "waverers" also left: First, Brothers Amand and Victor, then later Brother
Romuald. Eventually, Brother Peter and Brother Winfrid also left, leaving only four of the original
group.

Of particular interest are the data on positive affect relations ("liking," using the terminology later
adopted by White et al. (1976)), in which each monk was asked if he had positive relations to each
of the other monks. Each monk ranked only his top three choices (or four, in the case of ties) on
"liking". Here, we consider a directed edge from monk A to monk B to exist if A nominated B
among these top choices.

The data were gathered at three times to capture changes in group sentiment over time. They
represent three time points in the period during which a new cohort had entered the monastery near
the end of the study but before the major conflict began. These three time points are labeled T2,
T3, and T4 in Tables D5 through D16 in the appendices of Sampson’s 1969 dissertation. and the
corresponding network data sets are named samplk1, samplk2, and samplk3, respectively.

See also the data set sampson containing the time-aggregated graph samplike.

samplk3 is a data set of Hoff, Raftery and Handcock (2002).

The data sets are stored as network objects with three vertex attributes:

group Groups of novices as classified by Sampson, that is, "Loyal", "Outcasts", and "Turks", but
with a fourth group called the "Waverers" by White et al. (1975) that comprises two of the
original Loyal opposition and one of the original Outcasts. See the samplike data set for the
original classifications of these three waverers.

cloisterville An indicator of attendance in the minor seminary of "Cloisterville" before coming to
the monastery.

vertex.names The given names of the novices. NB: These names have been corrected as of ergm
version 3.6.1.

This data set is standard in the social network analysis literature, having been modeled by Holland
and Leinhardt (1981), Reitz (1982), Holland, Laskey and Leinhardt (1983), Fienberg, Meyer, and
Wasserman (1981), and Hoff, Raftery, and Handcock (2002), among others. This is only a small
piece of the data collected by Sampson.

This data set was updated for version 2.5 (March 2012) to add the cloisterville variable and
refine the names. This information is from de Nooy, Mrvar, and Batagelj (2005). The original
vertex names were: Romul_10, Bonaven_5, Ambrose_9, Berth_6, Peter_4, Louis_11, Victor_8,
Winf_12, John_1, Greg_2, Hugh_14, Boni_15, Mark_7, Albert_16, Amand_13, Basil_3, Elias_17,
Simp_18. The numbers indicate the ordering used in the original dissertation of Sampson (1969).

Mislabeling in Versions Prior to 3.6.1

In ergm versions 3.6.0 and earlier, The adjacency matrices of the samplike, samplk1, samplk2,
and samplk3 networks reflected the original Sampson (1969) ordering of the names even though the

238 sampson

vertex labels used the name order of de Nooy, Mrvar, and Batagelj (2005). That is, in ergm version
3.6.0 and earlier, the vertices were mislabeled. The correct order is the same one given in Tables
D5, D9, and D13 of Sampson (1969): John Bosco, Gregory, Basil, Peter, Bonaventure, Berthold,
Mark, Victor, Ambrose, Romauld (Sampson uses both spellings "Romauld" and "Ramauld" in the
dissertation), Louis, Winfrid, Amand, Hugh, Boniface, Albert, Elias, Simplicius. By contrast, the
order given in ergm version 3.6.0 and earlier is: Ramuald, Bonaventure, Ambrose, Berthold, Peter,
Louis, Victor, Winfrid, John Bosco, Gregory, Hugh, Boniface, Mark, Albert, Amand, Basil, Elias,
Simplicius.

Source

Sampson, S.~F. (1968), A novitiate in a period of change: An experimental and case study of
relationships, Unpublished Ph.D. dissertation, Department of Sociology, Cornell University.

http://vlado.fmf.uni-lj.si/pub/networks/data/esna/sampson.htm

References

White, H.C., Boorman, S.A. and Breiger, R.L. (1976). Social structure from multiple networks. I.
Blockmodels of roles and positions. American Journal of Sociology, 81(4), 730-780.

Wouter de Nooy, Andrej Mrvar, Vladimir Batagelj (2005) Exploratory Social Network Analysis
with Pajek, Cambridge: Cambridge University Press

See Also

sampson, florentine, network, plot.network, ergm

sampson Cumulative network of positive affection within a monastery as a "net-
work" object

Description

A network object containing the cumulative "liking" nominations of Sampson’s (1969) monks over
the three time points.

Usage

data(sampson)

Details

Sampson (1969) recorded the social interactions among a group of monks while he was a resident
as an experimenter at the cloister. During his stay, a political "crisis in the cloister" resulted in the
expulsion of four monks– namely, the three "outcasts," Brothers Elias, Simplicius, Basil, and the
leader of the "young Turks," Brother Gregory. Not long after Brother Gregory departed, all but
one of the "young Turks" left voluntarily: Brothers John Bosco, Albert, Boniface, Hugh, and Mark.
Then, all three of the "waverers" also left: First, Brothers Amand and Victor, then later Brother

http://vlado.fmf.uni-lj.si/pub/networks/data/esna/sampson.htm

sampson 239

Romuald. Eventually, Brother Peter and Brother Winfrid also left, leaving only four of the original
group.

Of particular interest are the data on positive affect relations ("liking," using the terminology later
adopted by White et al. (1976)), in which each monk was asked if he had positive relations to each
of the other monks. Each monk ranked only his top three choices (or four, in the case of ties) on
"liking". Here, we consider a directed edge from monk A to monk B to exist if A nominated B
among these top choices.

The data were gathered at three times to capture changes in group sentiment over time. They
represent three time points in the period during which a new cohort had entered the monastery near
the end of the study but before the major conflict began. These three time points are labeled T2, T3,
and T4 in Tables D5 through D16 in the appendices of Sampson’s 1969 dissertation. The samplike
data set is the time-aggregated network. Thus, a tie from monk A to monk B exists if A nominated
B as one of his three (or four, in case of ties) best friends at any of the three time points.

See also the data sets samplk1, samplk2, and samplk3, containing the networks at each of the three
individual time points.

The data set is stored as a network object with three vertex attributes:

group Groups of novices as classified by Sampson: "Loyal", "Outcasts", and "Turks".

cloisterville An indicator of attendance in the minor seminary of "Cloisterville" before coming to
the monastery.

vertex.names The given names of the novices. NB: These names have been corrected as of ergm
version 3.6.1; see details below.

In addition, the data set has an edge attribute, nominations, giving the number of times (out of 3)
that monk A nominated monk B.

This data set is standard in the social network analysis literature, having been modeled by Holland
and Leinhardt (1981), Reitz (1982), Holland, Laskey and Leinhardt (1983), Fienberg, Meyer, and
Wasserman (1981), and Hoff, Raftery, and Handcock (2002), among others. This is only a small
piece of the data collected by Sampson.

This data set was updated for version 2.5 (March 2012) to add the cloisterville variable and
refine the names. This information is from de Nooy, Mrvar, and Batagelj (2005). The original
vertex names were: Romul_10, Bonaven_5, Ambrose_9, Berth_6, Peter_4, Louis_11, Victor_8,
Winf_12, John_1, Greg_2, Hugh_14, Boni_15, Mark_7, Albert_16, Amand_13, Basil_3, Elias_17,
Simp_18. The numbers indicate the ordering used in the original dissertation of Sampson (1969).

Mislabeling in Versions Prior to 3.6.1

In ergm version 3.6.0 and earlier, The adjacency matrices of the samplike, samplk1, samplk2, and
samplk3 networks reflected the original Sampson (1969) ordering of the names even though the
vertex labels used the name order of de Nooy, Mrvar, and Batagelj (2005). That is, in ergm version
3.6.0 and earlier, the vertices were mislabeled. The correct order is the same one given in Tables
D5, D9, and D13 of Sampson (1969): John Bosco, Gregory, Basil, Peter, Bonaventure, Berthold,
Mark, Victor, Ambrose, Romauld (Sampson uses both spellings "Romauld" and "Ramauld" in the
dissertation), Louis, Winfrid, Amand, Hugh, Boniface, Albert, Elias, Simplicius. By contrast, the
order given in ergm version 3.6.0 and earlier is: Ramuald, Bonaventure, Ambrose, Berthold, Peter,
Louis, Victor, Winfrid, John Bosco, Gregory, Hugh, Boniface, Mark, Albert, Amand, Basil, Elias,
Simplicius.

240 san

Source

Sampson, S.~F. (1968), A novitiate in a period of change: An experimental and case study of
relationships, Unpublished Ph.D. dissertation, Department of Sociology, Cornell University.

http://vlado.fmf.uni-lj.si/pub/networks/data/esna/sampson.htm

References

White, H.C., Boorman, S.A. and Breiger, R.L. (1976). Social structure from multiple networks. I.
Blockmodels of roles and positions. American Journal of Sociology, 81(4), 730-780.

Wouter de Nooy, Andrej Mrvar, Vladimir Batagelj (2005) Exploratory Social Network Analysis
with Pajek, Cambridge: Cambridge University Press

See Also

florentine, network, plot.network, ergm

san Generate networks with a given set of network statistics

Description

This function attempts to find a network or networks whose statistics match those passed in via the
target.stats vector.

Usage

san(object, ...)

S3 method for class 'formula'
san(
object,
response = NULL,
reference = ~Bernoulli,
constraints = ~.,
target.stats = NULL,
nsim = NULL,
basis = NULL,
output = c("network", "edgelist", "ergm_state"),
only.last = TRUE,
control = control.san(),
verbose = FALSE,
offset.coef = NULL,
...

)

S3 method for class 'ergm_model'

http://vlado.fmf.uni-lj.si/pub/networks/data/esna/sampson.htm

san 241

san(
object,
reference = ~Bernoulli,
constraints = ~.,
target.stats = NULL,
nsim = NULL,
basis = NULL,
output = c("network", "edgelist", "ergm_state"),
only.last = TRUE,
control = control.san(),
verbose = FALSE,
offset.coef = NULL,
...

)

Arguments

object Either a formula or some other supported representation of an ERGM, such
as an ergm_model object. formula should be of the form y ~ <model terms>,
where y is a network object or a matrix that can be coerced to a network ob-
ject. For the details on the possible <model terms>, see ergmTerm. To create a
network object in , use the network() function, then add nodal attributes to it
using the %v% operator if necessary.

... Further arguments passed to other functions.

response Either a character string, a formula, or NULL (the default), to specify the response
attributes and whether the ERGM is binary or valued. Interpreted as follows:

NULL Model simple presence or absence, via a binary ERGM.
character string The name of the edge attribute whose value is to be modeled.

Type of ERGM will be determined by whether the attribute is logical
(TRUE/FALSE) for binary or numeric for valued.

a formula must be of the form NAME~EXPR|TYPE (with | being literal). EXPR is
evaluated in the formula’s environment with the network’s edge attributes
accessible as variables. The optional NAME specifies the name of the edge
attribute into which the results should be stored, with the default being a
concise version of EXPR. Normally, the type of ERGM is determined by
whether the result of evaluating EXPR is logical or numeric, but the optional
TYPE can be used to override by specifying a scalar of the type involved
(e.g., TRUE for binary and 1 for valued).

reference A one-sided formula specifying the reference measure (h(y)) to be used. See
help for ERGM reference measures implemented in the ergm package.

constraints A formula specifying one or more constraints on the support of the distribution
of the networks being modeled. Multiple constraints may be given, separated
by “+” and “-” operators. See ergmConstraint for the detailed explanation of
their semantics and also for an indexed list of the constraints visible to the ergm
package.
The default is to have no constraints except those provided through the ergmlhs
API.

242 san

Together with the model terms in the formula and the reference measure, the
constraints define the distribution of networks being modeled.
It is also possible to specify a proposal function directly either by passing a string
with the function’s name (in which case, arguments to the proposal should be
specified through the MCMC.prop.args argument to the relevant control func-
tion, or by giving it on the LHS of the hints formula to MCMC.prop argument to
the control function. This will override the one chosen automatically.
Note that not all possible combinations of constraints and reference measures
are supported. However, for relatively simple constraints (i.e., those that sim-
ply permit or forbid specific dyads or sets of dyads from changing), arbitrary
combinations should be possible.

target.stats A vector of the same length as the number of non-offset statistics implied by the
formula.

nsim Number of networks to generate. Deprecated: just use replicate().

basis If not NULL, a network object used to start the Markov chain. If NULL, this is
taken to be the network named in the formula.

output Character, one of "network" (default), "edgelist", or "ergm_state": deter-
mines the output format. Partial matching is performed.

only.last if TRUE, only return the last network generated; otherwise, return a network.list
with nsim networks.

control A list of control parameters for algorithm tuning, typically constructed with
control.san(). Its documentation gives the the list of recognized control pa-
rameters and their meaning. The more generic utility snctrl() (StatNet Con-
TRoL) also provides argument completion for the available control functions
and limited argument name checking.

verbose A logical or an integer to control the amount of progress and diagnostic in-
formation to be printed. FALSE/0 produces minimal output, with higher values
producing more detail. Note that very high values (5+) may significantly slow
down processing.

offset.coef A vector of offset coefficients; these must be passed in by the user. Note that
these should be the same set of coefficients one would pass to ergm via its
offset.coef argument.

formula (By default, the formula is taken from the ergm object. If a different formula
object is wanted, specify it here.

Details

The following description is an exegesis of section 4 of Krivitsky et al. (2022).

Let g be a vector of target statistics for the network we wish to construct. That is, we are given an
arbitrary network y0 ∈ Y , and we seek a network y ∈ Y such that g(y) ≈ g – ideally equality is
achieved, but in practice we may have to settle for a close approximation. The variant of simulated
annealing is as follows.

The energy function is defined

EW (y) = (g(y)− g)TW (g(y)− g),

san 243

with W a symmetric positive (barring multicollinearity in statistics) definite matrix of weights. This
function achieves 0 only if the target is reached. A good choice of this matrix yields a more efficient
search.

A standard simulated annealing loop is used, as described below, with some modifications. In
particular, we allow the user to specify a vector of offsets η to bias the annealing, with ηk = 0
denoting no offset. Offsets can be used with SAN to forbid certain statistics from ever increasing
or decreasing. As with ergm(), offset terms are specified using the offset() decorator and their
coefficients specified with the offset.coef argument. By default, finite offsets are ignored by, but
this can be overridden by setting the control.san() argument SAN.ignore.finite.offsets =
FALSE.

The number of simulated annealing runs is specified by the SAN.maxit control parameter and the
initial value of the temperature T is set to SAN.tau. The value of T decreases linearly until T = 0
at the last run, which implies that all proposals that increase EW (y) are rejected. The weight matrix
W is initially set to Ip/p, where Ip is the identity matrix of an appropriate dimension. For weight
W and temperature T , the simulated annealing iteration proceeds as follows:

1. Test if EW (y) = 0. If so, then exit.

2. Generate a perturbed network y∗ from a proposal that respects the model constraints. (This is
typically the same proposal as that used for MCMC.)

3. Store the quantity g(y∗)− g(y) for later use.

4. Calculate acceptance probability

α = exp[−(EW (y∗)− EW (y))/T + ηT(g(y∗)− g(y))]

(If |ηk| =∞ and gk(y
∗)− gk(y) = 0, their product is defined to be 0.)

5. Replace y with y∗ with probability min(1, α).

After the specified number of iterations, T is updated as described above, and W is recalculated by
first computing a matrix S, the sample covariance matrix of the proposed differences stored in Step
3 (i.e., whether or not they were rejected), then W = S+/tr(S+), where S+ is the Moore–Penrose
pseudoinverse of S and tr(S+) is the trace of S+. The differences in Step 3 closely reflect the
relative variances and correlations among the network statistics.

In Step 2, the many options for MCMC proposals can provide for effective means of speeding the
SAN algorithm’s search for a viable network.

Value

A network or list of networks that hopefully have network statistics close to the target.stats
vector. No guarantees are provided about their probability distribution. Additionally, attr()-style
attributes formula and stats are included.

Methods (by class)

• san(formula): Sufficient statistics are specified by a formula.

• san(ergm_model): A lower-level function that expects a pre-initialized ergm_model.

244 san

References

Krivitsky, P. N., Hunter, D. R., Morris, M., & Klumb, C. (2022). ergm 4: Computational Improve-
ments. arXiv preprint arXiv:2203.08198.

Examples

initialize x to a random undirected network with 50 nodes and a density of 0.1
x <- network(50, density = 0.05, directed = FALSE)

try to find a network on 50 nodes with 300 edges, 150 triangles,
and 1250 4-cycles, starting from the network x
y <- san(x ~ edges + triangles + cycle(4), target.stats = c(300, 150, 1250))

check results
summary(y ~ edges + triangles + cycle(4))

initialize x to a random directed network with 50 nodes
x <- network(50)

add vertex attributes
x %v% 'give' <- runif(50, 0, 1)
x %v% 'take' <- runif(50, 0, 1)

try to find a set of 100 directed edges making the outward sum of
'give' and the inward sum of 'take' both equal to 62.5, so in
edges (i,j) the node i tends to have above average 'give' and j
tends to have above average 'take'
y <- san(x ~ edges + nodeocov('give') + nodeicov('take'), target.stats = c(100, 62.5, 62.5))

check results
summary(y ~ edges + nodeocov('give') + nodeicov('take'))

initialize x to a random undirected network with 50 nodes
x <- network(50, directed = FALSE)

add a vertex attribute
x %v% 'popularity' <- runif(50, 0, 1)

try to find a set of 100 edges making the total sum of
popularity(i) and popularity(j) over all edges (i,j) equal to
125, so nodes with higher popularity are more likely to be
connected to other nodes
y <- san(x ~ edges + nodecov('popularity'), target.stats = c(100, 125))

check results
summary(y ~ edges + nodecov('popularity'))

creates a network with denser "core" spreading out to sparser
"periphery"
plot(y)

search.ergmTerms 245

search.ergmTerms Search ERGM terms, constraints, references, hints, and proposals

Description

Searches through the database of ergmTerms, ergmConstraints, ergmReferences, ergmHints, and
ergmProposals and prints out a list of terms and term-alikes appropriate for the specified network’s
structural constraints, optionally restricting by additional keywords and search term matches.

Usage

search.ergmTerms(search, net, keywords, name, packages)

search.ergmConstraints(search, keywords, name, packages)

search.ergmReferences(search, keywords, name, packages)

search.ergmHints(search, keywords, name, packages)

search.ergmProposals(search, name, reference, constraints, packages)

Arguments

search optional character search term to search for in the text of the term descriptions.
Only matching terms will be returned. Matching is case insensitive.

net a network object that the term would be applied to, used as template to determine
directedness, bipartite, etc

keywords optional character vector of keyword tags to use to restrict the results (i.e. ’curved’,
’triad-related’)

name optional character name of a specific term to return

packages optional character vector indicating the subset of packages in which to search
reference, constraints

optional names of references and constraints to narrow down the proposal

Details

Uses grep() internally to match the search terms against the term description, so search is cur-
rently matched as a single phrase. Keyword tags will only return a match if all of the specified tags
are included in the term.

Value

prints out the name and short description of matching terms, and invisibly returns them as a list. If
name is specified, prints out the full definition for the named term.

246 search.ergmTerms

Author(s)

skyebend@uw.edu

See Also

See also ergmTerm, ergmConstraint, ergmReference, ergmHint, and ergmProposal, for lists of
terms and term-alikes visible to ergm.

Examples

find all of the terms that mention triangles
search.ergmTerms('triangle')

two ways to search for bipartite terms:

search using a bipartite net as a template
myNet<-network.initialize(5,bipartite=3)
search.ergmTerms(net=myNet)

or request the bipartite keyword
search.ergmTerms(keywords='bipartite')

search on multiple keywords
search.ergmTerms(keywords=c('bipartite','dyad-independent'))

print out the content for a specific term
search.ergmTerms(name='b2factor')

request the bipartite keyword in the ergm package
search.ergmTerms(keywords='bipartite', packages='ergm')

find all of the constraint that mention degrees
search.ergmConstraints('degree')

search for hints only
search.ergmConstraints(keywords='hint')

search on multiple keywords
search.ergmConstraints(keywords=c('directed','dyad-independent'))

print out the content for a specific constraint
search.ergmConstraints(name='b1degrees')

request the bipartite keyword in the ergm package
search.ergmConstraints(keywords='directed', packages='ergm')

find all discrete references
search.ergmReferences(keywords='discrete')

https://CRAN.R-project.org/package=ergm

sender-ergmTerm 247

find all of the hints
search.ergmHints('degree')

find all of the proposals that mention triangles
search.ergmProposals('MH algorithm')

print out the content for a specific proposals
search.ergmProposals(name='randomtoggle')

find all proposals with required or optional constraints
search.ergmProposals(constraints='.dyads')

find all proposals with references
search.ergmProposals(reference='Bernoulli')

request proposals that mention triangle in the ergm package
search.ergmProposals('MH algorithm', packages='ergm')

sender-ergmTerm Sender effect

Description

This term adds one network statistic for each node equal to the number of out-ties for that node.
This measures the activity of the node. The term for the first node is omitted by default because
of linear dependence that arises if this term is used together with edges , but its coefficient can be
computed as the negative of the sum of the coefficients of all the other actors. That is, the average
coefficient is zero, following the Holland-Leinhardt parametrization of the p_1 model (Holland
and Leinhardt, 1981).

For undirected networks, see sociality .

Usage

binary: sender(base=1, nodes=-1)

valued: sender(base=1, nodes=-1, form="sum")

Arguments

base deprecated

nodes specify which nodes’ statistics should be included or excluded (see Specifying
Vertex attributes and Levels (?nodal_attributes) for details)

form character how to aggregate tie values in a valued ERGM

248 simmelianties-ergmTerm

Note

The argument base is retained for backwards compatibility and may be removed in a future version.
When both base and nodes are passed, nodes overrides base.

This term can only be used with directed networks.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, dyad-independent, binary, valued

simmelian-ergmTerm Simmelian triads

Description

This term adds one statistic to the model equal to the number of Simmelian triads, as defined by
Krackhardt and Handcock (2007). This is a complete sub-graph of size three.

Usage

binary: simmelian

Note

This term can only be used with directed networks.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, triad-related, binary

simmelianties-ergmTerm

Ties in simmelian triads

Description

This term adds one statistic to the model equal to the number of ties in the network that are associ-
ated with Simmelian triads, as defined by Krackhardt and Handcock (2007). Each Simmelian has
six ties in it but, because Simmelians can overlap in terms of nodes (and associated ties), the total
number of ties in these Simmelians is less than six times the number of Simmelians. Hence this is
a measure of the clustering of Simmelians (given the number of Simmelians).

simulate.ergm 249

Usage

binary: simmelianties

Note

This term can only be used with directed networks.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, triad-related, binary

simulate.ergm Draw from the distribution of an Exponential Family Random Graph
Model

Description

simulate is used to draw from exponential family random network models. See ergm() for more
information on these models.

The method for ergm objects inherits the model, the coefficients, the response attribute, the ref-
erence, the constraints, and most simulation parameters from the model fit, unless overridden by
passing them explicitly. Unless overridden, the simulation is initialized with either a random draw
from near the fitted model saved by ergm() or, if unavailable, the network to which the ERGM was
fit.

Usage

S3 method for class 'formula_lhs_network'
simulate(object, nsim = 1, seed = NULL, ...)

simulate_formula(object, ..., basis = eval_lhs.formula(object))

S3 method for class 'network'
simulate_formula(
object,
nsim = 1,
seed = NULL,
coef,
response = NULL,
reference = ~Bernoulli,
constraints = ~.,
observational = FALSE,
monitor = NULL,
statsonly = FALSE,
esteq = FALSE,

250 simulate.ergm

output = c("network", "stats", "edgelist", "ergm_state"),
simplify = TRUE,
sequential = TRUE,
control = control.simulate.formula(),
verbose = FALSE,
...,
basis = ergm.getnetwork(object),
do.sim = NULL,
return.args = NULL

)

S3 method for class 'ergm_state'
simulate_formula(
object,
nsim = 1,
seed = NULL,
coef,
response = NULL,
reference = ~Bernoulli,
constraints = ~.,
observational = FALSE,
monitor = NULL,
statsonly = FALSE,
esteq = FALSE,
output = c("network", "stats", "edgelist", "ergm_state"),
simplify = TRUE,
sequential = TRUE,
control = control.simulate.formula(),
verbose = FALSE,
...,
basis = ergm.getnetwork(object),
do.sim = NULL,
return.args = NULL

)

S3 method for class 'ergm_model'
simulate(
object,
nsim = 1,
seed = NULL,
coef,
reference = if (is(constraints, "ergm_proposal")) NULL else trim_env(~Bernoulli),
constraints = trim_env(~.),
observational = FALSE,
monitor = NULL,
basis = NULL,
esteq = FALSE,
output = c("network", "stats", "edgelist", "ergm_state"),

simulate.ergm 251

simplify = TRUE,
sequential = TRUE,
control = control.simulate.formula(),
verbose = FALSE,
...,
do.sim = NULL,
return.args = NULL

)

S3 method for class 'ergm_state_full'
simulate(
object,
nsim = 1,
seed = NULL,
coef,
esteq = FALSE,
output = c("network", "stats", "edgelist", "ergm_state"),
simplify = TRUE,
sequential = TRUE,
control = control.simulate.formula(),
verbose = FALSE,
...,
return.args = NULL

)

S3 method for class 'ergm'
simulate(
object,
nsim = 1,
seed = NULL,
coef = coefficients(object),
response = object$network %ergmlhs% "response",
reference = object$reference,
constraints = list(object$constraints, object$obs.constraints),
observational = FALSE,
monitor = NULL,
basis = if (observational) object$network else NVL(object$newnetwork, object$network),
statsonly = FALSE,
esteq = FALSE,
output = c("network", "stats", "edgelist", "ergm_state"),
simplify = TRUE,
sequential = TRUE,
control = control.simulate.ergm(),
verbose = FALSE,
...,
return.args = NULL

)

252 simulate.ergm

Arguments

object Either a formula or an ergm object. The formula should be of the form y ~
<model terms>, where y is a network object or a matrix that can be coerced to a
network object. For the details on the possible <model terms>, see ergmTerm.
To create a network object in , use the network() function, then add nodal
attributes to it using the %v% operator if necessary.

nsim Number of networks to be randomly drawn from the given distribution on the
set of all networks, returned by the Metropolis-Hastings algorithm.

seed Seed value (integer) for the random number generator. See set.seed().

... Further arguments passed to or used by methods.

basis a value (usually a network) to override the LHS of the formula.

coef Vector of parameter values for the model from which the sample is to be drawn.
If object is of class ergm, the default value is the vector of estimated coeffi-
cients. Can be set to NULL to bypass, but only if return.args below is used.

response Either a character string, a formula, or NULL (the default), to specify the response
attributes and whether the ERGM is binary or valued. Interpreted as follows:

NULL Model simple presence or absence, via a binary ERGM.
character string The name of the edge attribute whose value is to be modeled.

Type of ERGM will be determined by whether the attribute is logical
(TRUE/FALSE) for binary or numeric for valued.

a formula must be of the form NAME~EXPR|TYPE (with | being literal). EXPR is
evaluated in the formula’s environment with the network’s edge attributes
accessible as variables. The optional NAME specifies the name of the edge
attribute into which the results should be stored, with the default being a
concise version of EXPR. Normally, the type of ERGM is determined by
whether the result of evaluating EXPR is logical or numeric, but the optional
TYPE can be used to override by specifying a scalar of the type involved
(e.g., TRUE for binary and 1 for valued).

reference A one-sided formula specifying the reference measure (h(y)) to be used. See
help for ERGM reference measures implemented in the ergm package.

constraints A formula specifying one or more constraints on the support of the distribution
of the networks being modeled. Multiple constraints may be given, separated
by “+” and “-” operators. See ergmConstraint for the detailed explanation of
their semantics and also for an indexed list of the constraints visible to the ergm
package.
The default is to have no constraints except those provided through the ergmlhs
API.
Together with the model terms in the formula and the reference measure, the
constraints define the distribution of networks being modeled.
It is also possible to specify a proposal function directly either by passing a string
with the function’s name (in which case, arguments to the proposal should be
specified through the MCMC.prop.args argument to the relevant control func-
tion, or by giving it on the LHS of the hints formula to MCMC.prop argument to
the control function. This will override the one chosen automatically.

simulate.ergm 253

Note that not all possible combinations of constraints and reference measures
are supported. However, for relatively simple constraints (i.e., those that sim-
ply permit or forbid specific dyads or sets of dyads from changing), arbitrary
combinations should be possible.

observational Inherit observational constraints rather than model constraints.

monitor A one-sided formula specifying one or more terms whose value is to be moni-
tored. These terms are appended to the model, along with a coefficient of 0, so
their statistics are returned. An ergm_model objectcan be passed as well.

statsonly Logical: If TRUE, return only the network statistics, not the network(s) them-
selves. Deprecated in favor of output=.

esteq Logical: If TRUE, compute the sample estimating equations of an ERGM: if
the model is non-curved, all non-offset statistics are returned either way, but if
the model is curved, the score estimating function values (3.1) by Hunter and
Handcock (2006) are returned instead.

output Normally character, one of "network" (default), "stats", "edgelist", or "ergm_state":
determines the output format. Partial matching is performed.
Alternatively, a function with prototype function(ergm_state, chain, iter, ...)
that is called for each returned network, and its return value, rather than the net-
work itself, is stored. This can be used to, for example, store the simulated
networks to disk without storing them in memory or compute network statistics
not implemented using the ERGM API, without having to store the networks
themselves.

simplify Logical: If TRUE the output is "simplified": sampled networks are returned in a
single list, statistics from multiple parallel chains are stacked, etc.. This makes
it consistent with behavior prior to ergm 3.10.

sequential Logical: If FALSE, each of the nsim simulated Markov chains begins at the
initial network. If TRUE, the end of one simulation is used as the start of the
next. Irrelevant when nsim=1.

control A list of control parameters for algorithm tuning, typically constructed with
control.simulate.ergm() or control.simulate.formula(), which have dif-
ferent defaults. Their documentation gives the the list of recognized control pa-
rameters and their meaning. The more generic utility snctrl() (StatNet Con-
TRoL) also provides argument completion for the available control functions
and limited argument name checking.

verbose A logical or an integer to control the amount of progress and diagnostic in-
formation to be printed. FALSE/0 produces minimal output, with higher values
producing more detail. Note that very high values (5+) may significantly slow
down processing.

do.sim Logical; a deprecated interface superseded by return.args, that saves the in-
puts to the next level of the function.

return.args Character; if not NULL, the simulate method for that particular class will, in-
stead of proceeding for simulation, instead return its arguments as a list that can
be passed as a second argument to do.call() or a lower-level function such
as ergm_MCMC_sample(). This can be useful if, for example, one wants to run
several simulations with varying coefficients and does not want to reinitialize

254 simulate.ergm

the model and the proposal every time. Valid inputs at this time are "formula",
"ergm_model", and one of the "ergm_state" classes, for the three respective
stopping points.

Details

A sample of networks is randomly drawn from the specified model. The model is specified by the
first argument of the function. If the first argument is a formula then this defines the model. If the
first argument is the output of a call to ergm() then the model used for that call is the one fit – and
unless coef is specified, the sample is from the MLE of the parameters. If neither of those are given
as the first argument then a Bernoulli network is generated with the probability of ties defined by
prob or coef.

Note that the first network is sampled after burnin steps, and any subsequent networks are sampled
each interval steps after the first.

More information can be found by looking at the documentation of ergm().

Value

If output=="stats" an mcmc object containing the simulated network statistics. If control$parallel>0,
an mcmc.list object. If simplify=TRUE (the default), these would then be "stacked" and converted
to a standard matrix. A logical vector indicating whether or not the term had come from the
monitor= formula is stored in attr()-style attribute "monitored".

Otherwise, a representation of the simulated network is returned, in the form specified by output.
In addition to a network representation or a list thereof, they have the following attr()-style at-
tributes:

formula The formula used to generate the sample.

stats An mcmc or mcmc.list object as above.

control Control parameters used to generate the sample.

constraints Constraints used to generate the sample.

reference The reference measure for the sample.

monitor The monitoring formula.

response The edge attribute used as a response.

The following are the permitted network formats:

"network" If nsim==1, an object of class network. If nsim>1, it returns an object of class network.list
(a list of networks) with the above-listed additional attributes.

"edgelist" An edgelist representation of the network, or a list thereof, depending on nsim.

"ergm_state" A semi-internal representation of a network consisting of a network object emptied
of edges, with an attached edgelist matrix, or a list thereof, depending on nsim.

If simplify==FALSE, the networks are returned as a nested list, with outer list being the parallel
chain (including 1 for no parallelism) and inner list being the samples within that chains (including
1, if one network per chain). If TRUE, they are concatenated, and if a total of one network had been
simulated, the network itself will be returned.

simulate.ergm 255

Functions

• simulate(ergm_state_full): a low-level function to simulate from an ergm_state object.

Note

The actual network method for simulate_formula() is actually called .simulate_formula.network()
and is also exported as an object. This allows it to be overridden by extension packages, such as
tergm, but also accessed directly when needed.

simulate.ergm_model() is a lower-level interface, providing a simulate() method for the ergm_model
class. The basis argument is required; monitor, if passed, must be an ergm_model as well; and
constraints can be an ergm_proposal object instead.

See Also

ergm(), network, ergm_MCMC_sample() for a demonstration of return.args=.

Examples

#
Let's draw from a Bernoulli model with 16 nodes
and density 0.5 (i.e., coef = c(0,0))
#
g.sim <- simulate(network(16) ~ edges + mutual, coef=c(0, 0))
#
What are the statistics like?
#
summary(g.sim ~ edges + mutual)
#
Now simulate a network with higher mutuality
#
g.sim <- simulate(network(16) ~ edges + mutual, coef=c(0,2))
#
How do the statistics look?
#
summary(g.sim ~ edges + mutual)
#
Let's draw from a Bernoulli model with 16 nodes
and tie probability 0.1
#
g.use <- network(16,density=0.1,directed=FALSE)
#
Starting from this network let's draw 3 realizations
of a edges and 2-star network
#
g.sim <- simulate(~edges+kstar(2), nsim=3, coef=c(-1.8,0.03),

basis=g.use, control=control.simulate(
MCMC.burnin=1000,
MCMC.interval=100))

g.sim
summary(g.sim)
#

256 simulate.formula

attach the Florentine Marriage data
#
data(florentine)
#
fit an edges and 2-star model using the ergm function
#
gest <- ergm(flomarriage ~ edges + kstar(2))
summary(gest)
#
Draw from the fitted model (statistics only), and observe the number
of triangles as well.
#
g.sim <- simulate(gest, nsim=10,

monitor=~triangles, output="stats",
control=control.simulate.ergm(MCMC.burnin=1000, MCMC.interval=100))

g.sim

Custom output: store the edgecount (computed in R), iteration index, and chain index.
output.f <- function(x, iter, chain, ...){

list(nedges = network.edgecount(as.network(x)),
chain = chain, iter = iter)

}
g.sim <- simulate(gest, nsim=3,

output=output.f, simplify=FALSE,
control=control.simulate.ergm(MCMC.burnin=1000, MCMC.interval=100))

unclass(g.sim)

simulate.formula A simulate Method for formula objects that dispatches based on the
Left-Hand Side

Description

This method evaluates the left-hand side (LHS) of the given formula and dispatches it to an appro-
priate method based on the result by setting an nonce class name on the formula.

Usage

S3 method for class 'formula'
simulate(object, nsim = 1, seed = NULL, ..., basis, newdata, data)

S3 method for class 'formula_lhs'
simulate(object, nsim = 1, seed = NULL, ...)

Arguments

object a one- or two-sided formula.

nsim, seed number of realisations to simulate and the random seed to use; see simulate().

... additional arguments to methods.

smalldiff-ergmTerm 257

basis if given, overrides the LHS of the formula for the purposes of dispatching.

newdata, data if passed, the object’s LHS is evaluated in this environment; at most one of the
two may be passed.
The dispatching works as follows:

1. If basis is not passed, and the formula has an LHS the expression on the
LHS of the formula in the object is evaluated in the environment newdata
or data (if given), in any case enclosed by the environment of object.
Otherwise, basis is used.

2. The result is set as an attribute ".Basis" on object. If there is no basis
or LHS, it is not set.

3. The class vector of object has c("formula_lhs_CLASS", "formula_lhs")
prepended to it, where CLASS is the class of the LHS value or basis. If
LHS or basis has multiple classes, they are all prepended; if there is no
LHS or basis, c("formula_lhs_", "formula_lhs") is.

4. simulate() generic is evaluated on the new object, with all arguments
passed on, excluding basis; if newdata or data are missing, they too are
not passed on. The evaluation takes place in the parent’s environment.

A "method" to receive a formula whose LHS evaluates to CLASS can therefore
be implemented by a function simulate.formula_lhs_\var{CLASS}(). This
function can expect a formula object, with additional attribute .Basis giving
the evaluated LHS (so that it does not need to be evaluated again).

Functions

• simulate(formula_lhs): A function to catch the situation when there is no method imple-
mented for the class to which the LHS evaluates.

See Also

simulate.ergm() family of functions, which uses this interface.

smalldiff-ergmTerm Number of ties between actors with similar attribute values

Description

This term adds one statistic, having as its value the number of edges in the network for which the
incident actors’ attribute values differ less than cutoff ; that is, number of edges between i to j
such that abs(attr[i]-attr[j])<cutoff .

Usage

binary: smalldiff(attr, cutoff)

258 smallerthan-ergmTerm

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

maximum difference in attribute values for ties to be considered

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, dyad-independent, quantitative nodal attribute, undirected, binary

smallerthan-ergmTerm Number of dyads with values strictly smaller than a threshold

Description

Adds the number of statistics equal to the length of threshold equaling to the number of dyads
whose values are exceeded by the corresponding element of threshold .

Usage

valued: smallerthan(threshold=0)

Arguments

threshold vector of numerical values

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, dyad-independent, undirected, valued

snctrl 259

snctrl Statnet Control

Description

A utility to facilitate argument completion of control lists, reexported from statnet.common.

Currently recognised control parameters

This list is updated as packages are loaded and unloaded.

Package ergm:
control.ergm drop, init, init.method, main.method, force.main, main.hessian, checkpoint,

resume, MPLE.samplesize, init.MPLE.samplesize, MPLE.type, MPLE.maxit, MPLE.nonvar,
MPLE.nonident, MPLE.nonident.tol, MPLE.covariance.samplesize, MPLE.covariance.method,
MPLE.covariance.sim.burnin, MPLE.covariance.sim.interval, MPLE.check, MPLE.constraints.ignore,
MCMC.prop, MCMC.prop.weights, MCMC.prop.args, MCMC.interval, MCMC.burnin, MCMC.samplesize,
MCMC.effectiveSize, MCMC.effectiveSize.damp, MCMC.effectiveSize.maxruns, MCMC.effectiveSize.burnin.pval,
MCMC.effectiveSize.burnin.min, MCMC.effectiveSize.burnin.max, MCMC.effectiveSize.burnin.nmin,
MCMC.effectiveSize.burnin.nmax, MCMC.effectiveSize.burnin.PC, MCMC.effectiveSize.burnin.scl,
MCMC.effectiveSize.order.max, MCMC.return.stats, MCMC.runtime.traceplot, MCMC.maxedges,
MCMC.addto.se, MCMC.packagenames, SAN.maxit, SAN.nsteps.times, SAN, MCMLE.termination,
MCMLE.maxit, MCMLE.conv.min.pval, MCMLE.confidence, MCMLE.confidence.boost, MCMLE.confidence.boost.threshold,
MCMLE.confidence.boost.lag, MCMLE.NR.maxit, MCMLE.NR.reltol, obs.MCMC.mul, obs.MCMC.samplesize.mul,
obs.MCMC.samplesize, obs.MCMC.effectiveSize, obs.MCMC.interval.mul, obs.MCMC.interval,
obs.MCMC.burnin.mul, obs.MCMC.burnin, obs.MCMC.prop, obs.MCMC.prop.weights, obs.MCMC.prop.args,
obs.MCMC.impute.min_informative, obs.MCMC.impute.default_density, MCMLE.min.depfac,
MCMLE.sampsize.boost.pow, MCMLE.MCMC.precision, MCMLE.MCMC.max.ESS.frac, MCMLE.metric,
MCMLE.method, MCMLE.dampening, MCMLE.dampening.min.ess, MCMLE.dampening.level,
MCMLE.steplength.margin, MCMLE.steplength, MCMLE.steplength.parallel, MCMLE.sequential,
MCMLE.density.guard.min, MCMLE.density.guard, MCMLE.effectiveSize, obs.MCMLE.effectiveSize,
MCMLE.interval, MCMLE.burnin, MCMLE.samplesize.per_theta, MCMLE.samplesize.min,
MCMLE.samplesize, obs.MCMLE.samplesize.per_theta, obs.MCMLE.samplesize.min,
obs.MCMLE.samplesize, obs.MCMLE.interval, obs.MCMLE.burnin, MCMLE.steplength.solver,
MCMLE.last.boost, MCMLE.steplength.esteq, MCMLE.steplength.miss.sample, MCMLE.steplength.min,
MCMLE.effectiveSize.interval_drop, MCMLE.save_intermediates, MCMLE.nonvar, MCMLE.nonident,
MCMLE.nonident.tol, SA.phase1_n, SA.initial_gain, SA.nsubphases, SA.min_iterations,
SA.max_iterations, SA.phase3_n, SA.interval, SA.burnin, SA.samplesize, CD.samplesize.per_theta,
obs.CD.samplesize.per_theta, CD.nsteps, CD.multiplicity, CD.nsteps.obs, CD.multiplicity.obs,
CD.maxit, CD.conv.min.pval, CD.NR.maxit, CD.NR.reltol, CD.metric, CD.method, CD.dampening,
CD.dampening.min.ess, CD.dampening.level, CD.steplength.margin, CD.steplength,
CD.adaptive.epsilon, CD.steplength.esteq, CD.steplength.miss.sample, CD.steplength.min,
CD.steplength.parallel, CD.steplength.solver, loglik, term.options, seed, parallel,
parallel.type, parallel.version.check, parallel.inherit.MT, ...

control.ergm.bridge bridge.nsteps, bridge.target.se, bridge.bidirectional, drop,
MCMC.burnin, MCMC.burnin.between, MCMC.interval, MCMC.samplesize, obs.MCMC.burnin,
obs.MCMC.burnin.between, obs.MCMC.interval, obs.MCMC.samplesize, MCMC.prop, MCMC.prop.weights,

260 snctrl

MCMC.prop.args, obs.MCMC.prop, obs.MCMC.prop.weights, obs.MCMC.prop.args, MCMC.maxedges,
MCMC.packagenames, term.options, seed, parallel, parallel.type, parallel.version.check,
parallel.inherit.MT, ...

control.ergm.godfather term.options

control.gof.ergm nsim, MCMC.burnin, MCMC.interval, MCMC.batch, MCMC.prop, MCMC.prop.weights,
MCMC.prop.args, MCMC.maxedges, MCMC.packagenames, MCMC.runtime.traceplot, network.output,
seed, parallel, parallel.type, parallel.version.check, parallel.inherit.MT

control.gof.formula nsim, MCMC.burnin, MCMC.interval, MCMC.batch, MCMC.prop, MCMC.prop.weights,
MCMC.prop.args, MCMC.maxedges, MCMC.packagenames, MCMC.runtime.traceplot, network.output,
seed, parallel, parallel.type, parallel.version.check, parallel.inherit.MT

control.logLik.ergm bridge.nsteps, bridge.target.se, bridge.bidirectional, drop,
MCMC.burnin, MCMC.interval, MCMC.samplesize, obs.MCMC.samplesize, obs.MCMC.interval,
obs.MCMC.burnin, MCMC.prop, MCMC.prop.weights, MCMC.prop.args, obs.MCMC.prop,
obs.MCMC.prop.weights, obs.MCMC.prop.args, MCMC.maxedges, MCMC.packagenames,
term.options, seed, parallel, parallel.type, parallel.version.check, parallel.inherit.MT,
...

control.san SAN.maxit, SAN.tau, SAN.invcov, SAN.invcov.diag, SAN.nsteps.alloc, SAN.nsteps,
SAN.samplesize, SAN.prop, SAN.prop.weights, SAN.prop.args, SAN.packagenames,
SAN.ignore.finite.offsets, term.options, seed, parallel, parallel.type, parallel.version.check,
parallel.inherit.MT

control.simulate MCMC.burnin, MCMC.interval, MCMC.prop, MCMC.prop.weights, MCMC.prop.args,
MCMC.batch, MCMC.effectiveSize, MCMC.effectiveSize.damp, MCMC.effectiveSize.maxruns,
MCMC.effectiveSize.burnin.pval, MCMC.effectiveSize.burnin.min, MCMC.effectiveSize.burnin.max,
MCMC.effectiveSize.burnin.nmin, MCMC.effectiveSize.burnin.nmax, MCMC.effectiveSize.burnin.PC,
MCMC.effectiveSize.burnin.scl, MCMC.effectiveSize.order.max, MCMC.maxedges,
MCMC.packagenames, MCMC.runtime.traceplot, network.output, term.options, parallel,
parallel.type, parallel.version.check, parallel.inherit.MT, ...

control.simulate.ergm MCMC.burnin, MCMC.interval, MCMC.scale, MCMC.prop, MCMC.prop.weights,
MCMC.prop.args, MCMC.batch, MCMC.effectiveSize, MCMC.effectiveSize.damp, MCMC.effectiveSize.maxruns,
MCMC.effectiveSize.burnin.pval, MCMC.effectiveSize.burnin.min, MCMC.effectiveSize.burnin.max,
MCMC.effectiveSize.burnin.nmin, MCMC.effectiveSize.burnin.nmax, MCMC.effectiveSize.burnin.PC,
MCMC.effectiveSize.burnin.scl, MCMC.effectiveSize.order.max, MCMC.maxedges,
MCMC.packagenames, MCMC.runtime.traceplot, network.output, term.options, parallel,
parallel.type, parallel.version.check, parallel.inherit.MT, ...

control.simulate.formula MCMC.burnin, MCMC.interval, MCMC.prop, MCMC.prop.weights,
MCMC.prop.args, MCMC.batch, MCMC.effectiveSize, MCMC.effectiveSize.damp, MCMC.effectiveSize.maxruns,
MCMC.effectiveSize.burnin.pval, MCMC.effectiveSize.burnin.min, MCMC.effectiveSize.burnin.max,
MCMC.effectiveSize.burnin.nmin, MCMC.effectiveSize.burnin.nmax, MCMC.effectiveSize.burnin.PC,
MCMC.effectiveSize.burnin.scl, MCMC.effectiveSize.order.max, MCMC.maxedges,
MCMC.packagenames, MCMC.runtime.traceplot, network.output, term.options, parallel,
parallel.type, parallel.version.check, parallel.inherit.MT, ...

control.simulate.formula.ergm MCMC.burnin, MCMC.interval, MCMC.prop, MCMC.prop.weights,
MCMC.prop.args, MCMC.batch, MCMC.effectiveSize, MCMC.effectiveSize.damp, MCMC.effectiveSize.maxruns,
MCMC.effectiveSize.burnin.pval, MCMC.effectiveSize.burnin.min, MCMC.effectiveSize.burnin.max,
MCMC.effectiveSize.burnin.nmin, MCMC.effectiveSize.burnin.nmax, MCMC.effectiveSize.burnin.PC,
MCMC.effectiveSize.burnin.scl, MCMC.effectiveSize.order.max, MCMC.maxedges,
MCMC.packagenames, MCMC.runtime.traceplot, network.output, term.options, parallel,
parallel.type, parallel.version.check, parallel.inherit.MT, ...

sociality-ergmTerm 261

See Also

statnet.common::snctrl()

sociality-ergmTerm Undirected degree

Description

This term adds one network statistic for each node equal to the number of ties of that node. For
directed networks, see sender and receiver .

Usage

binary: sociality(attr=NULL, base=1, levels=NULL, nodes=-1)

valued: sociality(attr=NULL, base=1, levels=NULL, nodes=-1, form="sum")

Arguments

attr, levels this optional argument is deprecated and will be replaced with a more elegant
implementation in a future release. In the meantime, it specifies a categorical
vertex attribute (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details). If provided, this term only counts ties between nodes with the
same value of the attribute (an actor-specific version of the nodematch term), re-
stricted to be one of the values specified by (also deprecated) levels if levels
is not NULL .

base deprecated

nodes By default, nodes=-1 means that the statistic for the first node will be omitted,
but this argument may be changed to control which statistics are included just
as for the nodes argument of sender and receiver terms.

form character how to aggregate tie values in a valued ERGM

Note

The argument base is retained for backwards compatibility and may be removed in a future version.
When both base and levels are passed, levels overrides base.

The argument base is retained for backwards compatibility and may be removed in a future version.
When both base and nodes are passed, nodes overrides base.

This term can only be used with undirected networks.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, dyad-independent, undirected, binary, valued

262 spectrum0.mvar

sparse-ergmHint Sparse network

Description

The network is sparse. This typically results in a Tie-Non-Tie (TNT) proposal regime.

Usage

sparse

See Also

ergmHint for index of constraints and hints currently visible to the package.

Keywords: dyad-independent

spectrum0.mvar Multivariate version of coda’s spectrum0.ar().

Description

Its return value, divided by nrow(cbind(x)), is the estimated variance-covariance matrix of the
sampling distribution of the mean of x if x is a multivatriate time series with AR(p) structure, with
p determined by AIC.

Usage

spectrum0.mvar(
x,
order.max = NULL,
aic = is.null(order.max),
tol = .Machine$double.eps^0.5,
...

)

Arguments

x a matrix with observations in rows and variables in columns.

order.max maximum (or fixed) order for the AR model.

aic use AIC to select the order (up to order.max).

tol tolerance used in detecting multicollinearity. See Note below.

... additional arguments to ar().

StdNormal-ergmReference 263

Value

A square matrix with dimension equalling to the number of columns of x, with an additional at-
tribute "infl" giving the factor by which the effective sample size is reduced due to autocorrelation,
according to the Vats, Flegal, and Jones (2015) estimate for ESS.

Note

ar() fails if crossprod(x) is singular. This is is remedied as follows:

1. Standardize the variables.

2. Use the eigenvectors to map the variables onto their principal components.

3. Use the eigenvalues to standardize the principal components.

4. Drop those components whose standard deviation differs from 1 by more than tol. This
should filter out redundant components or those too numerically unstable.

5. Call ar() and calculate the variance.

6. Reverse the mapping in steps 1-4 to obtain the variance of the original data.

StdNormal-ergmReference

Standard Normal reference

Description

Specifies each dyad’s baseline distribution to be the normal distribution with mean 0 and variance
1.

Usage

StdNormal

See Also

ergmReference for index of reference distributions currently visible to the package.

Keywords: continuous

264 strat-ergmHint

strat-ergmHint Stratify Proposed Toggles by Mixing Type on a Vertex Attribute

Description

Proposed toggles are stratified according to mixing type on a vertex attribute.

Usage

strat(attr=NULL, pmat=NULL, empirical=FALSE)

Details

The user may pass a vertex attribute attr as an argument (the default for attr gives every vertex the
same attribute value), and may also pass a matrix of weights pmat (the default for pmat gives equal
weight to each mixing type). See Specifying Vertex Attributes and Levels for details on specifying
vertex attributes. The matrix pmat, if specified, must have the same dimensions as a mixing matrix
for the network and vertex attribute under consideration, and the correspondence between rows and
columns of pmat and values of attr is the same as for a mixing matrix.

The interpretation is that pmat[i,j]/sum(pmat) is the probability of proposing a toggle for mixing
type (i,j). (For undirected, unipartite networks, pmat is first symmetrized, and then entries below
the diagonal are set to zero. Only entries on or above the diagonal of the symmetrized pmat are
considered when making proposals. This accounts for the convention that mixing is undirected in
an undirected, unipartite network: a tail of type i and a head of type j has the same mixing type as
a tail of type j and a head of type i.)

As an alternative way of specifying pmat, the user may pass empirical = TRUE to use the mixing
matrix of the network beginning the MCMC chain as pmat. In order for this to work, that network
should have a reasonable (in particular, nonempty) edge set.

While some mixing types may be assigned zero proposal probability (either with a direct spec-
ification of pmat or with empirical = TRUE), this will not be recognized as a constraint by all
components of ergm, and should be used with caution.

See Also

ergmHint for index of constraints and hints currently visible to the package.

Keywords: dyad-independent

Sum-ergmTerm 265

Sum-ergmTerm A sum (or an arbitrary linear combination) of one or more formulas

Description

This operator sums up the RHS statistics of the input formulas elementwise.

Usage

binary: Sum(formulas, label)

valued: Sum(formulas, label)

Arguments

formulas a list (constructed using list() or c()) of ergm()-style formulas whose RHS
gives the statistics to be evaluated, or a single formula.
If a formula in the list has an LHS, it is interpreted as follows:

• a numeric scalar: Network statistics of this formula will be multiplied by
this.

• a numeric vector: Corresponding network statistics of this formula will be
multiplied by this.

• a numeric matrix: Vector of network statistics will be pre-multiplied by
this.

• a character string: One of several predefined linear combinations. Currently
supported presets are as follows:

– "sum" Network statistics of this formula will be summed up; equivalent
to matrix(1,1,p) , where p is the length of the network statistic vector.

– "mean" Network statistics of this formula will be averaged; equivalent
to matrix(1/p,1,p) , where p is the length of the network statistic
vector.

label used to specify the names of the elements of the resulting term sum vector. If
label is a character vector of length 1, it will be recycled with indices appended.
If a function is specified, formulas parameter names are extracted and their list
of character vectors is passed label.

Details

Note that each formula must either produce the same number of statistics or be mapped through a
matrix to produce the same number of statistics.

A single formula is also permitted. This can be useful if one wishes to, say, scale or sum up the
statistics returned by a formula.

Offsets are ignored unless there is only one formula and the transformation only scales the statistics
(i.e., the effective transformation matrix is diagonal).

266 summary.ergm

Curved models are supported, subject to some limitations. In particular, the first model’s etamap
will be used, overwriting the others. If label is not of length 1, it should have an attr -style
attribute "curved" specifying the names for the curved parameters.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: operator, binary, valued

sum-ergmTerm Sum of dyad values (optionally taken to a power)

Description

This term adds one statistic equal to the sum of dyad values taken to the power pow.

Usage

valued: sum(pow=1)

Arguments

pow power of dyad values. Defaults to 1.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, undirected, valued

summary.ergm Summarizing ERGM Model Fits

Description

base::summary() method for ergm() fits.

summary.ergm 267

Usage

S3 method for class 'ergm'
summary(
object,
...,
correlation = FALSE,
covariance = FALSE,
total.variation = TRUE

)

S3 method for class 'summary.ergm'
print(
x,
digits = max(3, getOption("digits") - 3),
correlation = x$correlation,
covariance = x$covariance,
signif.stars = getOption("show.signif.stars"),
eps.Pvalue = 1e-04,
print.formula = FALSE,
print.fitinfo = TRUE,
print.coefmat = TRUE,
print.message = TRUE,
print.deviances = TRUE,
print.drop = TRUE,
print.offset = TRUE,
print.call = TRUE,
...

)

Arguments

object an object of class ergm, usually, a result of a call to ergm().

... For summary.ergm() additional arguments are passed to logLik.ergm(). For
print.summary.ergm(), to stats::printCoefmat().

correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

covariance logical; if TRUE, the covariance matrix of the estimated parameters is returned
and printed.

total.variation

logical; if TRUE, the standard errors reported in the Std. Error column are
based on the sum of the likelihood variation and the MCMC variation. If FALSE
only the likelihood variation is used. The p-values are based on this source of
variation.

x object of class summary.ergm returned by summary.ergm().

digits significant digits for coefficients

signif.stars whether to print dots and stars to signify statistical significance. See print.summary.lm().

268 summary.ergm

eps.Pvalue p-values below this level will be printed as "<eps.Pvalue".
print.formula, print.fitinfo, print.coefmat, print.message,
print.deviances, print.drop, print.offset, print.call

which components of the fit summary to print.

Details

summary.ergm() tries to be smart about formatting the coefficients, standard errors, etc.

The default printout of the summary object contains the call, number of iterations used, null and
residual deviances, and the values of AIC and BIC (and their MCMC standard errors, if applicable).
The coefficient table contains the following columns:

• Estimate, Std. Error - parameter estimates and their standard errors
• MCMC % - if total.variation=TRUE (default) the percentage of standard error attributable

to MCMC estimation process rounded to an integer. See also vcov.ergm() and its sources
argument.

• z value, Pr(>|z|) - z-test and p-values

Value

The returned object is a list of class "ergm.summary" with the following elements:

formula ERGM model formula

call R call used to fit the model
correlation, covariance

whether to print correlation/covariance matrices of the estimated parameters
pseudolikelihood

was the model estimated with MPLE

independence is the model dyad-independent

control the control.ergm() object used

samplesize MCMC sample size

message optional message on the validity of the standard error estimates

null.lik.0 It is TRUE of the null model likelihood has not been calculated. See logLikNull()
devtext, devtable

Deviance type and table

aic, bic values of AIC and BIC

coefficients matrices with model parameters and associated statistics

asycov asymptotic covariance matrix

asyse asymptotic standard error matrix
offset, drop, estimate, iterations, mle.lik, null.lik

see documentation of the object returned by ergm()

See Also

The model fitting function ergm(), print.ergm(), and base::summary(). Function stats::coef()
will extract the matrix of coefficients with standard errors, t-statistics and p-values.

summary.formula 269

Examples

data(florentine)

x <- ergm(flomarriage ~ density)
summary(x)

summary.formula Calculation of network or graph statistics or other attributes specified
on a formula

Description

Most generally, this function computes those summaries of the object on the LHS of the formula
that are specified by its RHS. In particular, if given a network as its LHS and ergmTerm on its RHS,
it computes the sufficient statistics associated with those terms.

Usage

S3 method for class 'formula'
summary(object, ...)

Arguments

object A formula having as its LHS a network object or a matrix that can be coerced
to a network object, a network.list, or other types to be summarized using a
formula. (See ‘methods(’summary_formula’) for the possible LHS types.

... further arguments passed to or used by methods.

Details

In practice, summary.formula() is a thin wrapper around the summary_formula() generic, which
dispatches methods based on the class of the LHS of the formula.

Value

A vector of statistics specified in RHS of the formula.

See Also

ergm(), network(), ergmTerm

270 Symmetrize-ergmTerm

Examples

#
Lets look at the Florentine marriage data
#
data(florentine)
#
test the summary_formula function
#
summary(flomarriage ~ edges + kstar(2))
m <- as.matrix(flomarriage)
summary(m ~ edges) # twice as large as it should be
summary(m ~ edges, directed=FALSE) # Now it's correct

Symmetrize-ergmTerm Evaluation on symmetrized (undirected) network

Description

Evaluates the terms in formula on an undirected network constructed by symmetrizing the LHS
network using one of four rules:

1. "weak" A tie (i, j) is present in the constructed network if the LHS network has either tie (i, j)
or (j, i) (or both).

2. "strong" A tie (i, j) is present in the constructed network if the LHS network has both tie (i, j)
and tie (j, i) .

3. "upper" A tie (i, j) is present in the constructed network if the LHS network has tie (min(i, j),max(i, j))
: the upper triangle of the LHS network.

4. "lower" A tie (i, j) is present in the constructed network if the LHS network has tie (max(i, j),min(i, j))
: the lower triangle of the LHS network.

Usage

binary: Symmetrize(formula, rule="weak")

Arguments

formula a one-sided ergm()-style formula with the terms to be evaluated

rule one of "weak", "strong", "upper", "lower"

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, operator, binary

threetrail-ergmTerm 271

threetrail-ergmTerm Three-trails

Description

For an undirected network, this term adds one statistic equal to the number of 3-trails, where a 3-
trail is defined as a trail of length three that traverses three distinct edges. Note that a 3-trail need not
include four distinct nodes; in particular, a triangle counts as three 3-trails. For a directed network,
this term adds four statistics (or some subset of these four), one for each of the four distinct types
of directed three-paths. If the nodes of the path are written from left to right such that the middle
edge points to the right (R), then the four types are RRR, RRL, LRR, and LRL. That is, an RRR
3-trail is of the form i→ j → k → l , and RRL 3-trail is of the form i→ j → k ← l , etc. Like in
the undirected case, there is no requirement that the nodes be distinct in a directed 3-trail. However,
the three edges must all be distinct. Thus, a mutual tie i↔ j does not count as a 3-trail of the form
i→ j → i← j ; however, in the subnetwork i↔ j → k , there are two directed 3-trails, one LRR
(k ← j → i← j) and one RRR (j → i→ j ← k).

Usage

binary: threetrail(keep=NULL, levels=NULL)

binary: threepath(keep=NULL, levels=NULL)

Arguments

keep deprecated

levels specify a subset of the four statistics for directed networks. (See Specifying
Vertex attributes and Levels (?nodal_attributes) for details.)

Note

The argument keep is retained for backwards compatibility and may be removed in a future version.
When both keep and levels are passed, levels overrides keep.

This term used to be (inaccurately) called threepath . That name has been deprecated and may be
removed in a future version.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, triad-related, undirected, binary

272 transitiveties-ergmTerm

transitive-ergmTerm Transitive triads

Description

This term adds one statistic to the model, equal to the number of triads in the network that are
transitive. The transitive triads are those of type 120D , 030T , 120U , or 300 in the categorization of
Davis and Leinhardt (1972). For details on the 16 possible triad types, see ?triad.classify in the
sna package. Note the distinction from the ttriple term. This term can only be used with directed
networks.

Usage

binary: transitive

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, triad-related, binary

transitiveties-ergmTerm

Transitive ties

Description

This term adds one statistic, equal to the number of ties i→ j such that there exists a two-path from
i to j . (Related to the ttriple term.)

Usage

binary: transitiveties(attr=NULL, levels=NULL)

Arguments

attr quantitative attribute (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.) If set, all three nodes involved (i , j , and the node on the two-path)
must match on this attribute in order for i→ j to be counted.

levels TODO (See Specifying Vertex attributes and Levels (?nodal_attributes) for
details.)

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, directed, triad-related, undirected, binary

https://CRAN.R-project.org/package=sna

transitiveweights-ergmTerm 273

transitiveweights-ergmTerm

Transitive weights

Description

This statistic implements the transitive weights statistic defined by Krivitsky (2012), Equation 13.
For each of these options, the first (and the default) is more stable but also more conservative, while
the second is more sensitive but more likely to induce a multimodal distribution of networks.

Usage

valued: transitiveweights(twopath="min", combine="max", affect="min")

Arguments

twopath the minimum of the constituent dyads ("min") or their geometric mean (
"geomean")

combine the maximum of the 2-path strengths ("max") or their sum ("sum")

affect the minimum of the focus dyad and the combined strength of the two paths (
"min") or their geometric mean ("geomean")

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, nonnegative, triad-related, undirected, valued

triadcensus-ergmTerm Triad census

Description

For a directed network, this term adds one network statistic for each of an arbitrary subset of the 16
possible types of triads categorized by Davis and Leinhardt (1972) as 003, 012, 102, 021D, 021U, 021C, 111D, 111U, 030T, 030C, 201, 120D, 120U, 120C, 210,
and 300 . Note that at least one category should be dropped; otherwise a linear dependency will
exist among the 16 statistics, since they must sum to the total number of three-node sets. By default,
the category 003 , which is the category of completely empty three-node sets, is dropped. This is
considered category zero, and the others are numbered 1 through 15 in the order given above. Each
statistic is the count of the corresponding triad type in the network. For details on the 16 types, see
?triad.classify in the sna package, on which this code is based. For an undirected network, the
triad census is over the four types defined by the number of ties (i.e., 0, 1, 2, and 3).

Usage

binary: triadcensus(levels)

https://CRAN.R-project.org/package=sna

274 triadic-ergmHint

Arguments

levels For directed networks, specify a set of terms to add other than the default value
of 1:15. attributes and Levels (?nodal_attributes) for details.)

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, triad-related, undirected, binary

triadic-ergmHint Network with strong clustering (triad-closure) effects

Description

The network has a high clustering coefficient. This typically results in alternating between the Tie-
Non-Tie (TNT) proposal and a triad-focused proposal along the lines of that of Wang and Atchadé
(2013).

Usage

triadic(triFocus = 0.25, type="OTP")

.triadic(triFocus = 0.25, type = "OTP")

Arguments

triFocus A number between 0 and 1, indicating how often triad-focused proposals should
be made relative to the standard proposals.

type A string indicating the type of shared partner or path to be considered for di-
rected networks: "OTP" (default for directed), "ITP", "RTP", "OSP", and "ISP";
has no effect for undirected. See the section below on Shared partner types for
details.

Shared partner types

While there is only one shared partner configuration in the undirected case, nine distinct configura-
tions are possible for directed graphs, selected using the type argument. Currently, terms may be
defined with respect to five of these configurations; they are defined here as follows (using termi-
nology from Butts (2008) and the relevent package):

• Outgoing Two-path ("OTP"): vertex k is an OTP shared partner of ordered pair (i, j) iff i →
k → j. Also known as "transitive shared partner".

• Incoming Two-path ("ITP"): vertex k is an ITP shared partner of ordered pair (i, j) iff j →
k → i. Also known as "cyclical shared partner"

• Reciprocated Two-path ("RTP"): vertex k is an RTP shared partner of ordered pair (i, j) iff
i↔ k ↔ j.

triangle-ergmTerm 275

• Outgoing Shared Partner ("OSP"): vertex k is an OSP shared partner of ordered pair (i, j) iff
i→ k, j → k.

• Incoming Shared Partner ("ISP"): vertex k is an ISP shared partner of ordered pair (i, j) iff
k → i, k → j.

By default, outgoing two-paths ("OTP") are calculated. Note that Robins et al. (2009) define closely
related statistics to several of the above, using slightly different terminology.

.triadic() versus triadic()

If given a bipartite network, the dotted form will skip silently, whereas the plain form will raise an
error, since triadic effects are not possible in bipartite networks. The dotted form is thus suitable as
a default argument when the bipartitedness of the network is not known a priori.

References

Wang J, Atchadé YF (2013). “Approximate Bayesian Computation for Exponential Random Graph
Models for Large Social Networks.” Communications in Statistics - Simulation and Computation,
43(2), 359–377. ISSN 1532-4141, doi:10.1080/03610918.2012.703359.

See Also

ergmHint for index of constraints and hints currently visible to the package.

Keywords: dyad-dependent

triangle-ergmTerm Triangles

Description

By default, this term adds one statistic to the model equal to the number of triangles in the network.
For an undirected network, a triangle is defined to be any set {(i, j), (j, k), (k, i)} of three edges.
For a directed network, a triangle is defined as any set of three edges (i→j) and (j→k) and either
(k→i) or (k←i) . The former case is called a "transitive triple" and the latter is called a "cyclic
triple", so in the case of a directed network, triangle equals ttriple plus ctriple — thus at
most two of these three terms can be in a model.

Usage

binary: triangle(attr=NULL, diff=FALSE, levels=NULL)

binary: triangles(attr=NULL, diff=FALSE, levels=NULL)

https://doi.org/10.1080/03610918.2012.703359

276 tripercent-ergmTerm

Arguments

attr, diff quantitative attribute (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.) If attr is specified and diff is FALSE , then the count is restricted
to those triples of nodes with equal values of the vertex attribute specified by
attr . If attr is specified and diff is TRUE , then one statistic is added for each
value of attr , equal to the number of triangles where all three nodes have that
value of the attribute.

levels add one statistic for each value specified if diff is TRUE. (See Specifying Vertex
attributes and Levels (?nodal_attributes) for details.)

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, directed, frequently-used, triad-related, undirected, bi-
nary

tripercent-ergmTerm Triangle percentage

Description

By default, this term adds one statistic to the model equal to 100 times the ratio of the number
of triangles in the network to the sum of the number of triangles and the number of 2-stars not
in triangles (the latter is considered a potential but incomplete triangle). In case the denominator
equals zero, the statistic is defined to be zero. For the definition of triangle, see triangle . This is
often called the mean correlation coefficient. This term can only be used with undirected networks;
for directed networks, it is difficult to define the numerator and denominator in a consistent and
meaningful way.

Usage

binary: tripercent(attr=NULL, diff=FALSE, levels=NULL)

Arguments

attr, diff quantitative attribute (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.) If attr is specified and diff is FALSE , then the counts are restricted
to those triples of nodes with equal values of the vertex attribute specified by
attr . If attr is specified and diff is TRUE , then one statistic is added for each
value of attr , equal to the number of triangles where all three nodes have that
value of the attribute.

levels add one statistic for each value specified if diff is TRUE attributes and Levels
(?nodal_attributes) for details.)

ttriple-ergmTerm 277

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, triad-related, undirected, binary

ttriple-ergmTerm Transitive triples

Description

By default, this term adds one statistic to the model, equal to the number of transitive triples
in the network, defined as a set of edges {(i→j), j→k), (i→k)} . Note that triangle equals
ttriple+ctriple for a directed network, so at most two of the three terms can be in a model.

Usage

binary: ttriple(attr=NULL, diff=FALSE, levels=NULL)

binary: ttriad

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

diff If attr is specified and diff is FALSE , then the count is over the number of
transitive triples where all three nodes have the same value of the attribute. If
attr is specified and diff is TRUE , then one statistic is added for each value of
attr , equal to the number of triangles where all three nodes have that value of
the attribute.

levels add one statistic for each value specified if diff is TRUE. (See Specifying Vertex
attributes and Levels (?nodal_attributes) for details.)

Note

This term can only be used with directed networks.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: categorical nodal attribute, directed, triad-related, binary

278 Unif-ergmReference

twopath-ergmTerm 2-Paths

Description

This term adds one statistic to the model, equal to the number of 2-paths in the network. For a
directed network this is defined as a pair of edges (i→j), (j→k) , where i and j must be distinct.
That is, it is a directed path of length 2 from i to k via j . For directed networks a 2-path is also
a mixed 2-star but the interpretation is usually different; see m2star . For undirected networks a
twopath is defined as a pair of edges {i, j}, {j, k} . That is, it is an undirected path of length 2 from
i to k via j , also known as a 2-star.

Usage

binary: twopath

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: directed, undirected, binary

Unif-ergmReference Continuous Uniform reference

Description

Specifies each dyad’s baseline distribution to be continuous uniform between a and b: h(y) = 1 ,
with the support being [a, b].

Usage

Unif(a,b)

Arguments

a, b minimum and maximum to the baseline discrete uniform distribution, both in-
clusive. Both values must be finite.

See Also

ergmReference for index of reference distributions currently visible to the package.

Keywords: continuous

update.network 279

update.network Update the edges in a network based on a matrix

Description

Replaces the edges in a network object with the edges corresponding to the sociomatrix or edge list
specified by new.

Usage

S3 method for class 'network'
update(object, ...)

update_network(object, new, ...)

S3 method for class 'matrix_edgelist'
update_network(object, new, attrname = if (ncol(new) > 2) names(new)[3], ...)

S3 method for class 'data.frame'
update_network(object, new, attrname = if (ncol(new) > 2) names(new)[3], ...)

S3 method for class 'matrix'
update_network(object, new, matrix.type = NULL, attrname = NULL, ...)

S3 method for class 'ergm_state'
update_network(object, new, ...)

Arguments

object a network object.

... Additional arguments; currently unused.

new Either an adjacency matrix (a matrix of values indicating the presence and/or the
value of a tie from i to j) or an edge list (a two-column matrix listing origin and
destination node numbers for each edge, with an optional third column for the
value of the edge).

attrname For a network with edge weights gives the name of the edge attribute whose
names to set.

matrix.type One of "adjacency" or "edgelist" telling which type of matrix new is. Default
is to use the which.matrix.type() function.

Value

A new network object with the edges specified by new and network and vertex attributes copied
from the input network object. Input network is not modified.

280 wtd.median

Functions

• update_network(): dispatcher for network update based on the type of updating information.

• update_network(matrix_edgelist): a method for updating a network based on a matrix-
form edgelist

• update_network(data.frame): a method for updating a network based on an edgelist

• update_network(matrix): a method for updating a network based on a matrix

• update_network(ergm_state): a method for updating a network based on an ergm_state
object.

See Also

ergm(), network

Examples

#
data(florentine)
#
test the network.update function
#
Create a Bernoulli network
rand.net <- network(network.size(flomarriage))
store the sociomatrix
rand.mat <- rand.net[,]
Update the network
update(flomarriage, rand.mat, matrix.type="adjacency")
Try this with an edgelist
rand.mat <- as.matrix.network.edgelist(flomarriage)[1:5,]
update(flomarriage, rand.mat, matrix.type="edgelist")

wtd.median Weighted Median

Description

Compute weighted median.

Usage

wtd.median(x, na.rm = FALSE, weight = FALSE)

Arguments

x Vector of data, same length as weight

na.rm Logical: Should NAs be stripped before computation proceeds?

weight Vector of weights

wtd.median 281

Details

Uses a simple algorithm based on sorting.

Value

Returns an empirical .5 quantile from a weighted sample.

Index

∗ binary
Bernoulli-ergmReference, 40

∗ bipartite
b1concurrent-ergmTerm, 19
b1cov-ergmTerm, 20
b1degrange-ergmTerm, 20
b1degree-ergmTerm, 21
b1degrees-ergmConstraint, 22
b1dsp-ergmTerm, 22
b1factor-ergmTerm, 23
b1mindegree-ergmTerm, 24
b1nodematch-ergmTerm, 24
b1sociality-ergmTerm, 26
b1star-ergmTerm, 26
b1starmix-ergmTerm, 27
b1twostar-ergmTerm, 28
b2concurrent-ergmTerm, 29
b2cov-ergmTerm, 30
b2degrange-ergmTerm, 30
b2degree-ergmTerm, 31
b2degrees-ergmConstraint, 32
b2dsp-ergmTerm, 32
b2factor-ergmTerm, 33
b2mindegree-ergmTerm, 34
b2nodematch-ergmTerm, 34
b2sociality-ergmTerm, 35
b2star-ergmTerm, 36
b2starmix-ergmTerm, 37
b2twostar-ergmTerm, 38
coincidence-ergmTerm, 44
diff-ergmTerm, 83
gwb1degree-ergmTerm, 176
gwb1dsp-ergmTerm, 177
gwb2degree-ergmTerm, 178
gwb2dsp-ergmTerm, 179
isolatededges-ergmTerm, 195

∗ categorical dyadic attribute
localtriangle-ergmTerm, 199

∗ categorical nodal attribute

absdiffcat-ergmTerm, 9
altkstar-ergmTerm, 10
b1concurrent-ergmTerm, 19
b1degree-ergmTerm, 21
b1factor-ergmTerm, 23
b1nodematch-ergmTerm, 24
b1star-ergmTerm, 26
b1starmix-ergmTerm, 27
b1twostar-ergmTerm, 28
b2degree-ergmTerm, 31
b2factor-ergmTerm, 33
b2nodematch-ergmTerm, 34
b2star-ergmTerm, 36
b2starmix-ergmTerm, 37
b2twostar-ergmTerm, 38
concurrent-ergmTerm, 45
concurrentties-ergmTerm, 46
ctriple-ergmTerm, 73
degrange-ergmTerm, 78
degree-ergmTerm, 79
idegrange-ergmTerm, 188
idegree-ergmTerm, 189
istar-ergmTerm, 196
kstar-ergmTerm, 197
mm-ergmTerm, 206
nodefactor-ergmTerm, 215
nodeifactor-ergmTerm, 217
nodematch-ergmTerm, 218
nodemix-ergmTerm, 220
nodeofactor-ergmTerm, 222
odegrange-ergmTerm, 226
odegree-ergmTerm, 227
ostar-ergmTerm, 230
sociality-ergmTerm, 261
transitiveties-ergmTerm, 272
triangle-ergmTerm, 275
tripercent-ergmTerm, 276
ttriple-ergmTerm, 277

∗ classes

282

INDEX 283

as.network.numeric, 13
∗ continuous

StdNormal-ergmReference, 263
Unif-ergmReference, 278

∗ curved
altkstar-ergmTerm, 10
gwb1degree-ergmTerm, 176
gwb1dsp-ergmTerm, 177
gwb2degree-ergmTerm, 178
gwb2dsp-ergmTerm, 179
gwdegree-ergmTerm, 180
gwidegree-ergmTerm, 183
gwodegree-ergmTerm, 186

∗ datasets
cohab, 43
ecoli, 88
faux.desert.high, 159
faux.dixon.high, 160
faux.magnolia.high, 162
faux.mesa.high, 163
florentine, 167
g4, 170
kapferer, 196
molecule, 207
samplk, 236
sampson, 238

∗ directed
absdiff-ergmTerm, 8
absdiffcat-ergmTerm, 9
asymmetric-ergmTerm, 15
atleast-ergmTerm, 16
atmost-ergmTerm, 17
attrcov-ergmTerm, 17
balance-ergmTerm, 39
bd-ergmConstraint, 39
blockdiag-ergmConstraint, 40
blocks-ergmConstraint, 41
ctriple-ergmTerm, 73
cycle-ergmTerm, 75
cyclicalties-ergmTerm, 76
cyclicalweights-ergmTerm, 76
degreedist-ergmConstraint, 81
degrees-ergmConstraint, 82
density-ergmTerm, 82
diff-ergmTerm, 83
dsp-ergmTerm, 84
dyadcov-ergmTerm, 86
dyadnoise-ergmConstraint, 86

Dyads-ergmConstraint, 87
edgecov-ergmTerm, 89
edges-ergmTerm, 90
egocentric-ergmConstraint, 90
equalto-ergmTerm, 92
esp-ergmTerm, 156
fixallbut-ergmConstraint, 166
fixedas-ergmConstraint, 167
greaterthan-ergmTerm, 175
gwdsp-ergmTerm, 180
gwesp-ergmTerm, 182
gwidegree-ergmTerm, 183
gwnsp-ergmTerm, 184
gwodegree-ergmTerm, 186
hamming-ergmConstraint, 187
hamming-ergmTerm, 187
idegrange-ergmTerm, 188
idegree-ergmTerm, 189
idegree1.5-ergmTerm, 189
idegreedist-ergmConstraint, 190
idegrees-ergmConstraint, 190
ininterval-ergmTerm, 191
intransitive-ergmTerm, 191
isolates-ergmTerm, 195
istar-ergmTerm, 196
localtriangle-ergmTerm, 199
m2star-ergmTerm, 203
meandeg-ergmTerm, 205
mm-ergmTerm, 206
mutual-ergmTerm, 207
nearsimmelian-ergmTerm, 208
nodecov-ergmTerm, 214
nodecovar-ergmTerm, 214
nodefactor-ergmTerm, 215
nodeicov-ergmTerm, 216
nodeicovar-ergmTerm, 217
nodeifactor-ergmTerm, 217
nodematch-ergmTerm, 218
nodemix-ergmTerm, 220
nodeocov-ergmTerm, 221
nodeocovar-ergmTerm, 222
nodeofactor-ergmTerm, 222
nsp-ergmTerm, 224
observed-ergmConstraint, 225
odegrange-ergmTerm, 226
odegree-ergmTerm, 227
odegree1.5-ergmTerm, 227
odegreedist-ergmConstraint, 228

284 INDEX

odegrees-ergmConstraint, 228
ostar-ergmTerm, 230
receiver-ergmTerm, 235
sender-ergmTerm, 247
simmelian-ergmTerm, 248
simmelianties-ergmTerm, 248
smalldiff-ergmTerm, 257
smallerthan-ergmTerm, 258
sum-ergmTerm, 266
Symmetrize-ergmTerm, 270
threetrail-ergmTerm, 271
transitive-ergmTerm, 272
transitiveties-ergmTerm, 272
transitiveweights-ergmTerm, 273
triadcensus-ergmTerm, 273
triangle-ergmTerm, 275
ttriple-ergmTerm, 277
twopath-ergmTerm, 278

∗ discrete
Bernoulli-ergmReference, 40
DiscUnif-ergmReference, 84

∗ dyad-dependent
triadic-ergmHint, 274

∗ dyad-independent
absdiff-ergmTerm, 8
absdiffcat-ergmTerm, 9
asymmetric-ergmTerm, 15
atleast-ergmTerm, 16
atmost-ergmTerm, 17
attrcov-ergmTerm, 17
b1cov-ergmTerm, 20
b1factor-ergmTerm, 23
b1nodematch-ergmTerm, 24
b1sociality-ergmTerm, 26
b2cov-ergmTerm, 30
b2factor-ergmTerm, 33
b2nodematch-ergmTerm, 34
b2sociality-ergmTerm, 35
blockdiag-ergmConstraint, 40
blocks-ergmConstraint, 41
density-ergmTerm, 82
diff-ergmTerm, 83
dyadcov-ergmTerm, 86
dyadnoise-ergmConstraint, 86
Dyads-ergmConstraint, 87
edgecov-ergmTerm, 89
edges-ergmTerm, 90
egocentric-ergmConstraint, 90

equalto-ergmTerm, 92
fixallbut-ergmConstraint, 166
fixedas-ergmConstraint, 167
greaterthan-ergmTerm, 175
hamming-ergmTerm, 187
ininterval-ergmTerm, 191
meandeg-ergmTerm, 205
mm-ergmTerm, 206
nodecov-ergmTerm, 214
nodefactor-ergmTerm, 215
nodeifactor-ergmTerm, 217
nodematch-ergmTerm, 218
nodemix-ergmTerm, 220
nodeocov-ergmTerm, 221
nodeofactor-ergmTerm, 222
observed-ergmConstraint, 225
receiver-ergmTerm, 235
sender-ergmTerm, 247
smalldiff-ergmTerm, 257
smallerthan-ergmTerm, 258
sociality-ergmTerm, 261
sparse-ergmHint, 262
strat-ergmHint, 264

∗ finite
Bernoulli-ergmReference, 40
DiscUnif-ergmReference, 84

∗ frequently-used
b1cov-ergmTerm, 20
b1degree-ergmTerm, 21
b1factor-ergmTerm, 23
b1nodematch-ergmTerm, 24
b2concurrent-ergmTerm, 29
b2cov-ergmTerm, 30
b2degree-ergmTerm, 31
b2factor-ergmTerm, 33
b2nodematch-ergmTerm, 34
degree-ergmTerm, 79
diff-ergmTerm, 83
edgecov-ergmTerm, 89
gwdegree-ergmTerm, 180
idegree-ergmTerm, 189
isolates-ergmTerm, 195
mm-ergmTerm, 206
mutual-ergmTerm, 207
nodecov-ergmTerm, 214
nodefactor-ergmTerm, 215
nodeicov-ergmTerm, 216
nodeifactor-ergmTerm, 217

INDEX 285

nodematch-ergmTerm, 218
nodemix-ergmTerm, 220
odegree-ergmTerm, 227
triangle-ergmTerm, 275

∗ graphs
as.network.numeric, 13
gof, 172

∗ models
anova.ergm, 11
control.ergm, 46
control.ergm.bridge, 60
control.san, 66
control.simulate.ergm, 68
ergm, 93
ergm.allstats, 105
ergmConstraint, 114
ergmHint, 118
ergmKeyword, 119
ergmMPLE, 120
ergmProposal, 123
ergmReference, 125
ergmTerm, 126
gof, 172
logLik.ergm, 200
mcmc.diagnostics, 203
san, 240
simulate.ergm, 249
summary.ergm, 266
summary.formula, 269
update.network, 279

∗ model
enformulate.curved-deprecated, 91
ergm.bridge.llr, 107
fix.curved, 165
is.curved, 192
is.dyad.independent, 193

∗ nonnegative
Bernoulli-ergmReference, 40
cyclicalweights-ergmTerm, 76
transitiveweights-ergmTerm, 273

∗ operator
B-ergmTerm, 18
Curve-ergmTerm, 74
Dyads-ergmConstraint, 87
Exp-ergmTerm, 158
F-ergmTerm, 158
For-ergmTerm, 168
Label-ergmTerm, 198

Log-ergmTerm, 199
NodematchFilter-ergmTerm, 219
Offset-ergmTerm, 229
Prod-ergmTerm, 233
S-ergmTerm, 236
Sum-ergmTerm, 265
Symmetrize-ergmTerm, 270

∗ quantitative dyadic attribute
dyadcov-ergmTerm, 86
edgecov-ergmTerm, 89

∗ quantitative nodal attribute
absdiff-ergmTerm, 8
b1cov-ergmTerm, 20
b2cov-ergmTerm, 30
diff-ergmTerm, 83
nodecov-ergmTerm, 214
nodeicov-ergmTerm, 216
nodeocov-ergmTerm, 221
smalldiff-ergmTerm, 257

∗ regression
anova.ergm, 11
ergmMPLE, 120
summary.ergm, 266

∗ robust
wtd.median, 280

∗ soft
dyadnoise-ergmConstraint, 86

∗ triad-related
asymmetric-ergmTerm, 15
balance-ergmTerm, 39
ctriple-ergmTerm, 73
intransitive-ergmTerm, 191
localtriangle-ergmTerm, 199
nearsimmelian-ergmTerm, 208
opentriad-ergmTerm, 229
simmelian-ergmTerm, 248
simmelianties-ergmTerm, 248
threetrail-ergmTerm, 271
transitive-ergmTerm, 272
transitiveties-ergmTerm, 272
transitiveweights-ergmTerm, 273
triadcensus-ergmTerm, 273
triangle-ergmTerm, 275
tripercent-ergmTerm, 276
ttriple-ergmTerm, 277

∗ undirected
absdiff-ergmTerm, 8
absdiffcat-ergmTerm, 9

286 INDEX

altkstar-ergmTerm, 10
atleast-ergmTerm, 16
atmost-ergmTerm, 17
attrcov-ergmTerm, 17
b1concurrent-ergmTerm, 19
b1cov-ergmTerm, 20
b1degrange-ergmTerm, 20
b1degree-ergmTerm, 21
b1dsp-ergmTerm, 22
b1factor-ergmTerm, 23
b1mindegree-ergmTerm, 24
b1nodematch-ergmTerm, 24
b1sociality-ergmTerm, 26
b1star-ergmTerm, 26
b1starmix-ergmTerm, 27
b1twostar-ergmTerm, 28
b2concurrent-ergmTerm, 29
b2cov-ergmTerm, 30
b2degrange-ergmTerm, 30
b2degree-ergmTerm, 31
b2dsp-ergmTerm, 32
b2factor-ergmTerm, 33
b2mindegree-ergmTerm, 34
b2nodematch-ergmTerm, 34
b2sociality-ergmTerm, 35
b2star-ergmTerm, 36
b2starmix-ergmTerm, 37
b2twostar-ergmTerm, 38
balance-ergmTerm, 39
bd-ergmConstraint, 39
blockdiag-ergmConstraint, 40
blocks-ergmConstraint, 41
coincidence-ergmTerm, 44
concurrent-ergmTerm, 45
concurrentties-ergmTerm, 46
cycle-ergmTerm, 75
cyclicalties-ergmTerm, 76
cyclicalweights-ergmTerm, 76
degcor-ergmTerm, 77
degcrossprod-ergmTerm, 78
degrange-ergmTerm, 78
degree-ergmTerm, 79
degree1.5-ergmTerm, 80
degreedist-ergmConstraint, 81
degrees-ergmConstraint, 82
density-ergmTerm, 82
diff-ergmTerm, 83
dyadcov-ergmTerm, 86

dyadnoise-ergmConstraint, 86
Dyads-ergmConstraint, 87
edgecov-ergmTerm, 89
edges-ergmTerm, 90
egocentric-ergmConstraint, 90
equalto-ergmTerm, 92
fixallbut-ergmConstraint, 166
fixedas-ergmConstraint, 167
greaterthan-ergmTerm, 175
gwb1degree-ergmTerm, 176
gwb1dsp-ergmTerm, 177
gwb2degree-ergmTerm, 178
gwb2dsp-ergmTerm, 179
gwdegree-ergmTerm, 180
hamming-ergmConstraint, 187
hamming-ergmTerm, 187
ininterval-ergmTerm, 191
isolatededges-ergmTerm, 195
isolates-ergmTerm, 195
kstar-ergmTerm, 197
localtriangle-ergmTerm, 199
meandeg-ergmTerm, 205
mm-ergmTerm, 206
nodecov-ergmTerm, 214
nodefactor-ergmTerm, 215
nodematch-ergmTerm, 218
nodemix-ergmTerm, 220
observed-ergmConstraint, 225
opentriad-ergmTerm, 229
smalldiff-ergmTerm, 257
smallerthan-ergmTerm, 258
sociality-ergmTerm, 261
sum-ergmTerm, 266
threetrail-ergmTerm, 271
transitiveties-ergmTerm, 272
transitiveweights-ergmTerm, 273
triadcensus-ergmTerm, 273
triangle-ergmTerm, 275
tripercent-ergmTerm, 276
twopath-ergmTerm, 278

.dyads, 124

.dyads-ergmConstraint, 8

.simulate_formula.network
(simulate.ergm), 249

.triadic-ergmHint (triadic-ergmHint),
274

?ergmConstraint, 39
?nodal_attributes, 9, 19, 23, 25, 27, 33, 35,

INDEX 287

37, 45, 46, 73, 76, 176, 178, 180,
184, 186, 196, 197, 206, 208, 215,
218, 219, 223, 230, 271, 272, 274,
276, 277

%ergmlhs%, 115, 118, 195
%n%, 99, 149
%v%, 99, 149

absdiff-ergmTerm, 8
absdiffcat-ergmTerm, 9
AIC(), 201
AIC.ergm (logLik.ergm), 200
altkstar-ergmTerm, 10
anova(), 11
anova.ergm, 11
anova.ergmlist (anova.ergm), 11
anova.ergmlist(), 11
anyNA.ergm (ergm), 93
approx.hotelling.diff.test, 12
approx.hotelling.diff.test(), 171
ar(), 262, 263
as.network.numeric, 13
as.network.numeric(), 13
as.package_version, 128
as_mapper, 198
asymmetric-ergmTerm, 15
atleast-ergmTerm, 16
atmost-ergmTerm, 17
attr (nodal_attributes), 210
attr(), 211, 243, 254
attrcov-ergmTerm, 17
attrname (nodal_attributes), 210
attrs (nodal_attributes), 210

B(), 127, 128
B-ergmTerm, 18
b1concurrent-ergmTerm, 19
b1cov-ergmTerm, 20
b1degrange-ergmTerm, 20
b1degree-ergmTerm, 21
b1degrees-ergmConstraint, 22
b1dsp-ergmTerm, 22
b1factor-ergmTerm, 23
b1mindegree-ergmTerm, 24
b1nodematch-ergmTerm, 24
b1sociality-ergmTerm, 26
b1star-ergmTerm, 26
b1starmix-ergmTerm, 27
b1twostar-ergmTerm, 28

b2concurrent-ergmTerm, 29
b2cov-ergmTerm, 30
b2degrange-ergmTerm, 30
b2degree-ergmTerm, 31
b2degrees-ergmConstraint, 32
b2dsp-ergmTerm, 32
b2factor-ergmTerm, 33
b2mindegree-ergmTerm, 34
b2nodematch-ergmTerm, 34
b2sociality-ergmTerm, 35
b2star-ergmTerm, 36
b2starmix-ergmTerm, 37
b2twostar-ergmTerm, 38
balance-ergmTerm, 39
base::summary(), 266, 268
bd-ergmConstraint, 39
Bernoulli-ergmReference, 40
BIC(), 201
BIC.ergm (logLik.ergm), 200
blockdiag-ergmConstraint, 40
blocks-ergmConstraint, 41
by (nodal_attributes), 210

c(), 233, 265
check.ErgmTerm, 42
cluster, 103
coda::geweke.diag(), 171
coda::summary.mcmc.list(), 204
coef(), 224, 231
cohab, 43
cohab_MixMat (cohab), 43
cohab_PopWts (cohab), 43
cohab_TargetStats (cohab), 43
coincidence-ergmTerm, 44
COLLAPSE_SMALLEST (nodal_attributes),

210
concurrent-ergmTerm, 45
concurrentties-ergmTerm, 46
constraints-ergm (ergmConstraint), 114
constraints.ergm (ergmConstraint), 114
control.ergm, 46, 259
control.ergm(), 62, 66, 73, 95, 98, 102, 103,

118, 121, 151, 268
control.ergm.bridge, 60, 259
control.ergm.bridge(), 58, 109
control.ergm.godfather, 260
control.gof, 63
control.gof(), 60, 73
control.gof.ergm, 260

288 INDEX

control.gof.ergm(), 173
control.gof.formula, 260
control.gof.formula(), 173
control.logLik.ergm, 260
control.logLik.ergm

(control.ergm.bridge), 60
control.logLik.ergm(), 201, 202
control.san, 66, 260
control.san(), 54, 242, 243
control.simulate, 260
control.simulate

(control.simulate.ergm), 68
control.simulate(), 60, 66
control.simulate.ergm, 68, 260
control.simulate.ergm(), 59, 118, 151,

253
control.simulate.formula, 260
control.simulate.formula(), 253
control.simulate.formula.ergm, 260
control$drop, 97
control$init.method, 50
ctriad-ergmTerm (ctriple-ergmTerm), 73
ctriple-ergmTerm, 73
Curve-ergmTerm, 74
cycle-ergmTerm, 75
cyclicalties-ergmTerm, 76
cyclicalweights-ergmTerm, 76

data.frame, 155
ddsp-ergmTerm (dsp-ergmTerm), 84
degcor-ergmTerm, 77
degcrossprod-ergmTerm, 78
degrange-ergmTerm, 78
degree(1), 165
degree(2), 165
degree-ergmTerm, 79
degree1.5-ergmTerm, 80
degreedist, 80
degreedist-ergmConstraint, 81
degrees-ergmConstraint, 82
density-ergmTerm, 82
desp-ergmTerm (esp-ergmTerm), 156
detectCores(), 104
deviance(), 201
deviance.ergm (logLik.ergm), 200
dgwdsp-ergmTerm (gwdsp-ergmTerm), 180
dgwesp, 102
dgwesp-ergmTerm (gwesp-ergmTerm), 182
dgwnsp-ergmTerm (gwnsp-ergmTerm), 184

diff-ergmTerm, 83
DiscUnif-ergmReference, 84
dnsp-ergmTerm (nsp-ergmTerm), 224
do.call(), 253
dsp-ergmTerm, 84
dyadcov-ergmTerm, 86
dyadnoise-ergmConstraint, 86
Dyads-ergmConstraint, 87

ecoli, 88
ecoli1 (ecoli), 88
ecoli2 (ecoli), 88
edgecov-ergmTerm, 89
edgelist, 195, 254
edges-ergmConstraint, 89
edges-ergmTerm, 90
egocentric-ergmConstraint, 90
end, 113
enformulate.curved

(enformulate.curved-deprecated),
91

enformulate.curved-deprecated, 91
enformulate.curved.ergm

(enformulate.curved-deprecated),
91

enformulate.curved.formula
(enformulate.curved-deprecated),
91

environment, 103
equalto-ergmTerm, 92
ergm, 11, 63, 72, 91, 93, 94, 96, 103, 104, 114,

123, 125–129, 149, 165, 173, 192,
195, 200, 201, 203, 224, 241, 249,
252

ERGM reference measures, 94, 241, 252
ergm(), 11, 18, 42, 46, 50, 52, 53, 56, 59, 60,

62, 65–67, 71, 73, 74, 91–93, 96–98,
101, 104, 105, 108, 112, 121–123,
158, 160–166, 169, 172–174, 192,
194, 198–200, 204, 205, 207, 229,
231, 233, 234, 236, 243, 249, 254,
255, 265–270, 280

ergm-constraints (ergmConstraint), 114
ergm-hints (ergmHint), 118
ergm-keywords (ergmKeyword), 119
ergm-options, 101
ergm-parallel, 102
ergm-proposals (ergmProposal), 123
ergm-references (ergmReference), 125

INDEX 289

ergm-terms (ergmTerm), 126
ergm.allstats, 105
ergm.bridge.0.llk (ergm.bridge.llr), 107
ergm.bridge.0.llk(), 63
ergm.bridge.dindstart.llk

(ergm.bridge.llr), 107
ergm.bridge.dindstart.llk(), 63, 201
ergm.bridge.llr, 107
ergm.bridge.llr(), 60, 63, 201
ergm.constraints (ergmConstraint), 114
ergm.design, 110
ergm.exact (ergm.allstats), 105
ergm.getCluster (ergm-parallel), 102
ergm.getCluster(), 103
ergm.getnetwork, 110
ergm.godfather, 111
ergm.godfather(), 113
ergm.godfather.ergm_model(), 113
ergm.hints (ergmHint), 118
ergm.keywords (ergmKeyword), 119
ergm.parallel (ergm-parallel), 102
ergm.proposals (ergmProposal), 123
ergm.references (ergmReference), 125
ergm.restartCluster (ergm-parallel), 102
ergm.stopCluster (ergm-parallel), 102
ergm.stopCluster(), 103
ergm.terms (ergmTerm), 126
ergm_conlist, 194
ergm_get_vattr(), 211
ergm_MCMC_sample, 150
ergm_MCMC_sample(), 102, 103, 253, 255
ergm_MCMC_slave (ergm_MCMC_sample), 150
ergm_model, 113, 151, 154, 241, 243, 253, 255
ergm_model(), 106, 112
ergm_plot.mcmc.list, 153
ergm_preprocess_response(), 195
ergm_proposal, 125, 151, 154, 255
ergm_state, 150, 151, 195, 255, 280
ergm_state_cache, 154
ergm_symmetrize, 155
ergmConstraint, 8, 22, 32, 40, 41, 81, 82, 87,

90, 91, 94, 114, 114, 118, 125, 127,
166, 167, 187, 190, 225, 228, 241,
245, 246, 252

ergmHint, 118, 125, 245, 246, 262, 264, 275
ergmKeyword, 119
ergmlhs, 94, 95, 241, 252
ergmMPLE, 99, 120

ergmMPLE(), 232
ergmProposal, 123, 245, 246
ergmReference, 40, 84, 114, 118, 125, 125,

127, 245, 246, 263, 278
ergmTerm, 8–10, 16–39, 42, 45, 46, 73, 75–80,

82, 84–87, 89, 90, 92, 94, 99, 114,
118, 125, 126, 127, 157–159, 169,
175–180, 182–186, 188–191, 195,
196, 198–200, 203, 206, 208,
214–223, 225–230, 234–236, 241,
245, 246, 248, 249, 252, 258, 261,
266, 269–274, 276–278

ergmTerm-options (ergm-options), 101
esp(1), 165
esp(2), 165
esp-ergmTerm, 156
Exp-ergmTerm, 158

F(), 127
F-ergmTerm, 158
faux.desert.high, 159, 160, 162
faux.dixon.high, 160
faux.magnolia.high, 160, 162, 162, 165
faux.mesa.high, 160, 162, 163, 163
fauxhigh (faux.mesa.high), 163
fix.curved, 165
fixallbut-ergmConstraint, 166
fixedas-ergmConstraint, 167
flobusiness (florentine), 167
flomarriage (florentine), 167
florentine, 167
for, 168, 169
For-ergmTerm, 168
formula, 94, 97, 174, 241, 243, 252, 254, 256,

257

g4, 170
get.MT_terms (ergm-parallel), 102
get.MT_terms(), 104
geweke.diag.mv, 171
glm(), 51, 52, 122
globalenv(), 154
gof, 172
gof(), 60, 65, 66, 73, 172, 174
gof.ergm(), 63, 174
gof.formula(), 174
greaterthan-ergmTerm, 175
grep(), 245
gwb1degree-ergmTerm, 176

290 INDEX

gwb1dsp-ergmTerm, 177
gwb2degree-ergmTerm, 178
gwb2dsp-ergmTerm, 179
gwdegree, 165
gwdegree-ergmTerm, 180
gwdsp, 104
gwdsp-ergmTerm, 180
gwesp, 101, 102, 165
gwesp-ergmTerm, 182
gwidegree-ergmTerm, 183
gwnsp-ergmTerm, 184
gwodegree-ergmTerm, 186

hamming-ergmConstraint, 187
hamming-ergmTerm, 187
hints (ergmHint), 118
hints about the network process, 123
hints-ergm (ergmHint), 118
hints.ergm (ergmHint), 118

I(), 211
idegrange-ergmTerm, 188
idegree-ergmTerm, 189
idegree1.5-ergmTerm, 189
idegreedist-ergmConstraint, 190
idegrees-ergmConstraint, 190
ininterval-ergmTerm, 191
InitErgmConstraint..triadic

(triadic-ergmHint), 274
InitErgmConstraint.b1degrees

(b1degrees-ergmConstraint), 22
InitErgmConstraint.b2degrees

(b2degrees-ergmConstraint), 32
InitErgmConstraint.bd

(bd-ergmConstraint), 39
InitErgmConstraint.blockdiag

(blockdiag-ergmConstraint), 40
InitErgmConstraint.blocks

(blocks-ergmConstraint), 41
InitErgmConstraint.degreedist

(degreedist-ergmConstraint), 81
InitErgmConstraint.degrees

(degrees-ergmConstraint), 82
InitErgmConstraint.dyadnoise

(dyadnoise-ergmConstraint), 86
InitErgmConstraint.Dyads

(Dyads-ergmConstraint), 87
InitErgmConstraint.edges

(edges-ergmConstraint), 89

InitErgmConstraint.egocentric
(egocentric-ergmConstraint), 90

InitErgmConstraint.fixallbut
(fixallbut-ergmConstraint), 166

InitErgmConstraint.fixedas
(fixedas-ergmConstraint), 167

InitErgmConstraint.hamming
(hamming-ergmConstraint), 187

InitErgmConstraint.idegreedist
(idegreedist-ergmConstraint),
190

InitErgmConstraint.idegrees
(idegrees-ergmConstraint), 190

InitErgmConstraint.nodedegrees
(degrees-ergmConstraint), 82

InitErgmConstraint.observed
(observed-ergmConstraint), 225

InitErgmConstraint.odegreedist
(odegreedist-ergmConstraint),
228

InitErgmConstraint.odegrees
(odegrees-ergmConstraint), 228

InitErgmConstraint.sparse
(sparse-ergmHint), 262

InitErgmConstraint.strat
(strat-ergmHint), 264

InitErgmConstraint.triadic
(triadic-ergmHint), 274

InitErgmProposal (ergmProposal), 123
InitErgmReference.Bernoulli

(Bernoulli-ergmReference), 40
InitErgmReference.DiscUnif

(DiscUnif-ergmReference), 84
InitErgmReference.StdNormal

(StdNormal-ergmReference), 263
InitErgmReference.Unif

(Unif-ergmReference), 278
InitErgmTerm, 43
InitErgmTerm (ergmTerm), 126
InitErgmTerm.absdiff

(absdiff-ergmTerm), 8
InitErgmTerm.absdiffcat

(absdiffcat-ergmTerm), 9
InitErgmTerm.altkstar

(altkstar-ergmTerm), 10
InitErgmTerm.asymmetric

(asymmetric-ergmTerm), 15
InitErgmTerm.attrcov

INDEX 291

(attrcov-ergmTerm), 17
InitErgmTerm.b1concurrent

(b1concurrent-ergmTerm), 19
InitErgmTerm.b1cov (b1cov-ergmTerm), 20
InitErgmTerm.b1degrange

(b1degrange-ergmTerm), 20
InitErgmTerm.b1degree

(b1degree-ergmTerm), 21
InitErgmTerm.b1dsp (b1dsp-ergmTerm), 22
InitErgmTerm.b1factor

(b1factor-ergmTerm), 23
InitErgmTerm.b1mindegree

(b1mindegree-ergmTerm), 24
InitErgmTerm.b1nodematch

(b1nodematch-ergmTerm), 24
InitErgmTerm.b1sociality

(b1sociality-ergmTerm), 26
InitErgmTerm.b1star (b1star-ergmTerm),

26
InitErgmTerm.b1starmix

(b1starmix-ergmTerm), 27
InitErgmTerm.b1twostar

(b1twostar-ergmTerm), 28
InitErgmTerm.b2concurrent

(b2concurrent-ergmTerm), 29
InitErgmTerm.b2cov (b2cov-ergmTerm), 30
InitErgmTerm.b2degrange

(b2degrange-ergmTerm), 30
InitErgmTerm.b2degree

(b2degree-ergmTerm), 31
InitErgmTerm.b2dsp (b2dsp-ergmTerm), 32
InitErgmTerm.b2factor

(b2factor-ergmTerm), 33
InitErgmTerm.b2mindegree

(b2mindegree-ergmTerm), 34
InitErgmTerm.b2nodematch

(b2nodematch-ergmTerm), 34
InitErgmTerm.b2sociality

(b2sociality-ergmTerm), 35
InitErgmTerm.b2star (b2star-ergmTerm),

36
InitErgmTerm.b2starmix

(b2starmix-ergmTerm), 37
InitErgmTerm.b2twostar

(b2twostar-ergmTerm), 38
InitErgmTerm.balance

(balance-ergmTerm), 39
InitErgmTerm.coincidence

(coincidence-ergmTerm), 44
InitErgmTerm.concurrent

(concurrent-ergmTerm), 45
InitErgmTerm.concurrentties

(concurrentties-ergmTerm), 46
InitErgmTerm.ctriad (ctriple-ergmTerm),

73
InitErgmTerm.ctriple

(ctriple-ergmTerm), 73
InitErgmTerm.Curve (Curve-ergmTerm), 74
InitErgmTerm.cycle (cycle-ergmTerm), 75
InitErgmTerm.cyclicalties

(cyclicalties-ergmTerm), 76
InitErgmTerm.ddsp (dsp-ergmTerm), 84
InitErgmTerm.degcor (degcor-ergmTerm),

77
InitErgmTerm.degcrossprod

(degcrossprod-ergmTerm), 78
InitErgmTerm.degrange

(degrange-ergmTerm), 78
InitErgmTerm.degree (degree-ergmTerm),

79
InitErgmTerm.degree1.5

(degree1.5-ergmTerm), 80
InitErgmTerm.density

(density-ergmTerm), 82
InitErgmTerm.desp (esp-ergmTerm), 156
InitErgmTerm.dgwdsp (gwdsp-ergmTerm),

180
InitErgmTerm.dgwesp (gwesp-ergmTerm),

182
InitErgmTerm.dgwnsp (gwnsp-ergmTerm),

184
InitErgmTerm.diff (diff-ergmTerm), 83
InitErgmTerm.dnsp (nsp-ergmTerm), 224
InitErgmTerm.dsp (dsp-ergmTerm), 84
InitErgmTerm.dyadcov

(dyadcov-ergmTerm), 86
InitErgmTerm.edgecov

(edgecov-ergmTerm), 89
InitErgmTerm.edges (edges-ergmTerm), 90
InitErgmTerm.esp (esp-ergmTerm), 156
InitErgmTerm.Exp (Exp-ergmTerm), 158
InitErgmTerm.F (F-ergmTerm), 158
InitErgmTerm.For (For-ergmTerm), 168
InitErgmTerm.gwb1degree

(gwb1degree-ergmTerm), 176
InitErgmTerm.gwb1dsp

292 INDEX

(gwb1dsp-ergmTerm), 177
InitErgmTerm.gwb2degree

(gwb2degree-ergmTerm), 178
InitErgmTerm.gwb2dsp

(gwb2dsp-ergmTerm), 179
InitErgmTerm.gwdegree

(gwdegree-ergmTerm), 180
InitErgmTerm.gwdsp (gwdsp-ergmTerm), 180
InitErgmTerm.gwesp (gwesp-ergmTerm), 182
InitErgmTerm.gwidegree

(gwidegree-ergmTerm), 183
InitErgmTerm.gwnsp (gwnsp-ergmTerm), 184
InitErgmTerm.gwodegree

(gwodegree-ergmTerm), 186
InitErgmTerm.hamming

(hamming-ergmTerm), 187
InitErgmTerm.idegrange

(idegrange-ergmTerm), 188
InitErgmTerm.idegree

(idegree-ergmTerm), 189
InitErgmTerm.idegree1.5

(idegree1.5-ergmTerm), 189
InitErgmTerm.intransitive

(intransitive-ergmTerm), 191
InitErgmTerm.isolatededges

(isolatededges-ergmTerm), 195
InitErgmTerm.isolates

(isolates-ergmTerm), 195
InitErgmTerm.istar (istar-ergmTerm), 196
InitErgmTerm.kstar (kstar-ergmTerm), 197
InitErgmTerm.Label (Label-ergmTerm), 198
InitErgmTerm.localtriangle

(localtriangle-ergmTerm), 199
InitErgmTerm.Log (Log-ergmTerm), 199
InitErgmTerm.m2star (m2star-ergmTerm),

203
InitErgmTerm.meandeg

(meandeg-ergmTerm), 205
InitErgmTerm.mm (mm-ergmTerm), 206
InitErgmTerm.mutual (mutual-ergmTerm),

207
InitErgmTerm.nearsimmelian

(nearsimmelian-ergmTerm), 208
InitErgmTerm.nodecov

(nodecov-ergmTerm), 214
InitErgmTerm.nodefactor

(nodefactor-ergmTerm), 215
InitErgmTerm.nodeicov

(nodeicov-ergmTerm), 216
InitErgmTerm.nodeifactor

(nodeifactor-ergmTerm), 217
InitErgmTerm.nodemain

(nodecov-ergmTerm), 214
InitErgmTerm.nodematch

(nodematch-ergmTerm), 218
InitErgmTerm.NodematchFilter

(NodematchFilter-ergmTerm), 219
InitErgmTerm.nodemix

(nodemix-ergmTerm), 220
InitErgmTerm.nodeocov

(nodeocov-ergmTerm), 221
InitErgmTerm.nodeofactor

(nodeofactor-ergmTerm), 222
InitErgmTerm.nsp (nsp-ergmTerm), 224
InitErgmTerm.odegrange

(odegrange-ergmTerm), 226
InitErgmTerm.odegree

(odegree-ergmTerm), 227
InitErgmTerm.odegree1.5

(odegree1.5-ergmTerm), 227
InitErgmTerm.Offset (Offset-ergmTerm),

229
InitErgmTerm.opentriad

(opentriad-ergmTerm), 229
InitErgmTerm.ostar (ostar-ergmTerm), 230
InitErgmTerm.Parametrise

(Curve-ergmTerm), 74
InitErgmTerm.Parametrize

(Curve-ergmTerm), 74
InitErgmTerm.Prod (Prod-ergmTerm), 233
InitErgmTerm.receiver

(receiver-ergmTerm), 235
InitErgmTerm.S (S-ergmTerm), 236
InitErgmTerm.sender (sender-ergmTerm),

247
InitErgmTerm.simmelian

(simmelian-ergmTerm), 248
InitErgmTerm.simmelianties

(simmelianties-ergmTerm), 248
InitErgmTerm.smalldiff

(smalldiff-ergmTerm), 257
InitErgmTerm.sociality

(sociality-ergmTerm), 261
InitErgmTerm.Sum (Sum-ergmTerm), 265
InitErgmTerm.Symmetrize

(Symmetrize-ergmTerm), 270

INDEX 293

InitErgmTerm.threepath
(threetrail-ergmTerm), 271

InitErgmTerm.threetrail
(threetrail-ergmTerm), 271

InitErgmTerm.transitive
(transitive-ergmTerm), 272

InitErgmTerm.transitiveties
(transitiveties-ergmTerm), 272

InitErgmTerm.triadcensus
(triadcensus-ergmTerm), 273

InitErgmTerm.triangle
(triangle-ergmTerm), 275

InitErgmTerm.tripercent
(tripercent-ergmTerm), 276

InitErgmTerm.ttriad (ttriple-ergmTerm),
277

InitErgmTerm.ttriple
(ttriple-ergmTerm), 277

InitErgmTerm.twopath
(twopath-ergmTerm), 278

InitErgmWtTerm (ergmTerm), 126
InitWtErgmProposal (ergmProposal), 123
InitWtErgmTerm.absdiff

(absdiff-ergmTerm), 8
InitWtErgmTerm.absdiffcat

(absdiffcat-ergmTerm), 9
InitWtErgmTerm.atleast

(atleast-ergmTerm), 16
InitWtErgmTerm.atmost

(atmost-ergmTerm), 17
InitWtErgmTerm.B (B-ergmTerm), 18
InitWtErgmTerm.b1cov (b1cov-ergmTerm),

20
InitWtErgmTerm.b1factor

(b1factor-ergmTerm), 23
InitWtErgmTerm.b1sociality

(b1sociality-ergmTerm), 26
InitWtErgmTerm.b2cov (b2cov-ergmTerm),

30
InitWtErgmTerm.b2factor

(b2factor-ergmTerm), 33
InitWtErgmTerm.b2sociality

(b2sociality-ergmTerm), 35
InitWtErgmTerm.Curve (Curve-ergmTerm),

74
InitWtErgmTerm.cyclicalties

(cyclicalties-ergmTerm), 76
InitWtErgmTerm.cyclicalweights

(cyclicalweights-ergmTerm), 76
InitWtErgmTerm.diff (diff-ergmTerm), 83
InitWtErgmTerm.edgecov

(edgecov-ergmTerm), 89
InitWtErgmTerm.edges (edges-ergmTerm),

90
InitWtErgmTerm.equalto

(equalto-ergmTerm), 92
InitWtErgmTerm.Exp (Exp-ergmTerm), 158
InitWtErgmTerm.greaterthan

(greaterthan-ergmTerm), 175
InitWtErgmTerm.ininterval

(ininterval-ergmTerm), 191
InitWtErgmTerm.Label (Label-ergmTerm),

198
InitWtErgmTerm.Log (Log-ergmTerm), 199
InitWtErgmTerm.match

(nodematch-ergmTerm), 218
InitWtErgmTerm.mm (mm-ergmTerm), 206
InitWtErgmTerm.mutual

(mutual-ergmTerm), 207
InitWtErgmTerm.nodecov

(nodecov-ergmTerm), 214
InitWtErgmTerm.nodecovar

(nodecovar-ergmTerm), 214
InitWtErgmTerm.nodefactor

(nodefactor-ergmTerm), 215
InitWtErgmTerm.nodeicov

(nodeicov-ergmTerm), 216
InitWtErgmTerm.nodeicovar

(nodeicovar-ergmTerm), 217
InitWtErgmTerm.nodeifactor

(nodeifactor-ergmTerm), 217
InitWtErgmTerm.nodemain

(nodecov-ergmTerm), 214
InitWtErgmTerm.nodematch

(nodematch-ergmTerm), 218
InitWtErgmTerm.nodemix

(nodemix-ergmTerm), 220
InitWtErgmTerm.nodeocov

(nodeocov-ergmTerm), 221
InitWtErgmTerm.nodeocovar

(nodeocovar-ergmTerm), 222
InitWtErgmTerm.nodeofactor

(nodeofactor-ergmTerm), 222
InitWtErgmTerm.nonzero

(edges-ergmTerm), 90
InitWtErgmTerm.Parametrise

294 INDEX

(Curve-ergmTerm), 74
InitWtErgmTerm.Parametrize

(Curve-ergmTerm), 74
InitWtErgmTerm.Prod (Prod-ergmTerm), 233
InitWtErgmTerm.receiver

(receiver-ergmTerm), 235
InitWtErgmTerm.sender

(sender-ergmTerm), 247
InitWtErgmTerm.smallerthan

(smallerthan-ergmTerm), 258
InitWtErgmTerm.sociality

(sociality-ergmTerm), 261
InitWtErgmTerm.Sum (Sum-ergmTerm), 265
InitWtErgmTerm.sum (sum-ergmTerm), 266
InitWtErgmTerm.transitiveweights

(transitiveweights-ergmTerm),
273

intransitive-ergmTerm, 191
is.curved, 192
is.dyad.independent, 193
is.ergm (ergm), 93
is.na.ergm (ergm), 93
is.valued, 194
isolatededges-ergmTerm, 195
isolates-ergmTerm, 195
istar-ergmTerm, 196

kapferer, 196
kapferer2 (kapferer), 196
keywords-ergm (ergmKeyword), 119
keywords.ergm (ergmKeyword), 119
kstar-ergmTerm, 197

Label-ergmTerm, 198
LARGEST (nodal_attributes), 210
list, 198
list(), 233, 265
lm, 127
localtriangle-ergmTerm, 199
Log-ergmTerm, 199
logical, 94, 108, 113, 192, 193, 241, 252
logLik, 201, 202
logLik(), 200, 201
logLik.ergm, 200
logLik.ergm(), 11, 60, 63, 267
logLikNull, 202
logLikNull(), 201, 268

m2star-ergmTerm, 203

mapping and offset information, 122
match-ergmTerm (nodematch-ergmTerm), 218
matrix, 254
mcmc, 113, 171, 204, 254
mcmc.diagnostics, 203
mcmc.list, 13, 53, 151, 153, 171, 254
meandeg-ergmTerm, 205
merge(), 155
message(), 42
mm-ergmTerm, 206
molecule, 207
mutual-ergmTerm, 207

nearsimmelian-ergmTerm, 208
network, 13, 15, 81, 94, 95, 99, 109–113, 115,

121, 126, 127, 149, 155, 156,
159–165, 167, 170, 173, 195, 207,
209, 236–239, 241, 252, 254, 255,
269, 279, 280

network(), 174, 269
network.list, 209, 242, 254, 269
nobs.ergm (ergm), 93
nodal.attr (nodal_attributes), 210
nodal.attribute (nodal_attributes), 210
nodal_attributes, 210
node.attr (nodal_attributes), 210
node.attribute (nodal_attributes), 210
nodecov-ergmTerm, 213
nodecovar-ergmTerm, 214
nodedegrees-ergmConstraint

(degrees-ergmConstraint), 82
nodefactor-ergmTerm, 215
nodeicov-ergmTerm, 216
nodeicovar-ergmTerm, 217
nodeifactor-ergmTerm, 217
nodeisqrtcovar-ergmTerm

(nodeicovar-ergmTerm), 217
nodemain-ergmTerm (nodecov-ergmTerm),

214
nodematch-ergmTerm, 218
NodematchFilter-ergmTerm, 219
nodemix-ergmTerm, 220
nodeocov-ergmTerm, 221
nodeocovar-ergmTerm, 222
nodeofactor-ergmTerm, 222
nodesqrtcovar-ergmTerm

(nodecovar-ergmTerm), 214
nonzero-ergmTerm (edges-ergmTerm), 90
nparam, 223

INDEX 295

nsp-ergmTerm, 224
nthreads (ergm-parallel), 102
NULL, 103, 211
numeric, 94, 108, 113, 192, 193, 241, 252

observed-ergmConstraint, 225
odegrange-ergmTerm, 226
odegree-ergmTerm, 227
odegree1.5-ergmTerm, 227
odegreedist-ergmConstraint, 228
odegrees-ergmConstraint, 228
offset(), 243
Offset-ergmTerm, 229
on (nodal_attributes), 210
opentriad-ergmTerm, 229
options(), 101
options?ergm, 23, 32, 85, 95, 157, 177, 179,

181, 183, 185, 225
ostar-ergmTerm, 230

parallel (ergm-parallel), 102
parallel-ergm (ergm-parallel), 102
parallel.ergm (ergm-parallel), 102
param_names, 230
param_names<- (param_names), 230
Parametrise-ergmTerm (Curve-ergmTerm),

74
Parametrize-ergmTerm (Curve-ergmTerm),

74
plot.gof (gof), 172
plot.gof(), 174
plot.network(), 160, 162, 163, 165
predict.ergm (predict.formula), 231
predict.formula, 231
predict.glm(), 232
print(), 96, 209
print.ergm, 126
print.ergm (ergm), 93
print.ergm(), 268
print.gof (gof), 172
print.gof(), 174
print.htest(), 13
print.network.list (network.list), 209
print.summary.ergm (summary.ergm), 266
print.summary.ergm(), 267
print.summary.lm(), 267
Prod-ergmTerm, 233
proposals-ergm (ergmProposal), 123
proposals.ergm (ergmProposal), 123

purrr::as_mapper(), 169

QR decomposition, 51

rank_test.ergm, 234
receiver-ergmTerm, 235
references-ergm (ergmReference), 125
references.ergm (ergmReference), 125
replicate(), 242
rlebdm, 52, 110

S-ergmTerm, 236
sample space constraints, 123
samplike, 237, 239
samplike (sampson), 238
samplk, 236
samplk1, 237, 239
samplk1 (samplk), 236
samplk2, 237, 239
samplk2 (samplk), 236
samplk3, 237, 239
samplk3 (samplk), 236
sampson, 237, 238
san, 240
san(), 53, 54, 67, 68, 96
search.ergmConstraints, 114
search.ergmConstraints

(search.ergmTerms), 245
search.ergmHints, 118
search.ergmHints (search.ergmTerms), 245
search.ergmProposals, 123
search.ergmProposals

(search.ergmTerms), 245
search.ergmReferences

(search.ergmTerms), 245
search.ergmReferences(), 125
search.ergmTerms, 126, 129, 149, 245
sender-ergmTerm, 247
set.MT_terms (ergm-parallel), 102
set.MT_terms(), 59, 63, 65, 67, 72, 104
set.seed(), 58, 63, 65, 67, 252
simmelian-ergmTerm, 248
simmelianties-ergmTerm, 248
simulate, 112, 128, 249
simulate(), 72, 255–257
simulate.ergm, 249
simulate.ergm(), 60, 66, 68, 72, 73, 92, 113,

166, 174, 209, 257
simulate.ergm_model (simulate.ergm), 249

296 INDEX

simulate.ergm_model(), 255
simulate.ergm_state (simulate.ergm), 249
simulate.ergm_state_full

(simulate.ergm), 249
simulate.formula, 256
simulate.formula(), 73, 113
simulate.formula.ergm (simulate.ergm),

249
simulate.formula.ergm(), 107, 109, 110
simulate.formula_lhs

(simulate.formula), 256
simulate.formula_lhs_network

(simulate.ergm), 249
simulate_formula (simulate.ergm), 249
simulate_formula(), 232, 255
smalldiff-ergmTerm, 257
smallerthan-ergmTerm, 258
SMALLEST (nodal_attributes), 210
sna::symmetrize(), 155, 156
snctrl, 259
snctrl(), 95, 109, 121, 151, 173, 201, 202,

242, 253
sociality-ergmTerm, 261
sparse, 118
sparse-ergmConstraint

(sparse-ergmHint), 262
sparse-ergmHint, 262
Specifying Vertex attributes and

Levels, 128
Specifying Vertex Attributes and

Levels for details, 264
spectrum0.ar(), 262
spectrum0.mvar, 262
spectrum0.mvar(), 13, 171
sprintf(), 51, 57
start, 113
statnet.common::snctrl(), 261
stats::coef(), 268
stats::printCoefmat(), 267
StdNormal-ergmReference, 263
strat-ergmConstraint (strat-ergmHint),

264
strat-ergmHint, 264
Sum-ergmTerm, 265
sum-ergmTerm, 266
summary, 101
summary (summary.formula), 269
summary(), 209

summary.ergm, 126, 266
summary.ergm(), 99, 174, 205, 267, 268
summary.formula, 269
summary.formula(), 269
summary.network.list (network.list), 209
summary_formula(), 269
Symmetrize-ergmTerm, 270

t.test(), 13
tailor (kapferer), 196
term.options (ergm-options), 101
terms-ergm (ergmTerm), 126
terms.ergm (ergmTerm), 126
the ERGM sample space constraint with

that name, 80
threepath-ergmTerm

(threetrail-ergmTerm), 271
threetrail-ergmTerm, 271
tibble, 155
transitive-ergmTerm, 272
transitiveties-ergmTerm, 272
transitiveweights-ergmTerm, 273
triadcensus-ergmTerm, 273
triadic-ergmConstraint

(triadic-ergmHint), 274
triadic-ergmHint, 274
triangle-ergmTerm, 275
triangles-ergmTerm (triangle-ergmTerm),

275
tripercent-ergmTerm, 276
ttriad-ergmTerm (ttriple-ergmTerm), 277
ttriple-ergmTerm, 277
twopath-ergmTerm, 278

Unif-ergmReference, 278
update.network, 279
update_network (update.network), 279

vcov.ergm (ergm), 93
vcov.ergm(), 268
vertex.attr (nodal_attributes), 210
vertex.attribute (nodal_attributes), 210

warning(), 42
which.matrix.type(), 279
wtd.median, 280

	.dyads-ergmConstraint
	absdiff-ergmTerm
	absdiffcat-ergmTerm
	altkstar-ergmTerm
	anova.ergm
	approx.hotelling.diff.test
	as.network.numeric
	asymmetric-ergmTerm
	atleast-ergmTerm
	atmost-ergmTerm
	attrcov-ergmTerm
	B-ergmTerm
	b1concurrent-ergmTerm
	b1cov-ergmTerm
	b1degrange-ergmTerm
	b1degree-ergmTerm
	b1degrees-ergmConstraint
	b1dsp-ergmTerm
	b1factor-ergmTerm
	b1mindegree-ergmTerm
	b1nodematch-ergmTerm
	b1sociality-ergmTerm
	b1star-ergmTerm
	b1starmix-ergmTerm
	b1twostar-ergmTerm
	b2concurrent-ergmTerm
	b2cov-ergmTerm
	b2degrange-ergmTerm
	b2degree-ergmTerm
	b2degrees-ergmConstraint
	b2dsp-ergmTerm
	b2factor-ergmTerm
	b2mindegree-ergmTerm
	b2nodematch-ergmTerm
	b2sociality-ergmTerm
	b2star-ergmTerm
	b2starmix-ergmTerm
	b2twostar-ergmTerm
	balance-ergmTerm
	bd-ergmConstraint
	Bernoulli-ergmReference
	blockdiag-ergmConstraint
	blocks-ergmConstraint
	check.ErgmTerm
	cohab
	coincidence-ergmTerm
	concurrent-ergmTerm
	concurrentties-ergmTerm
	control.ergm
	control.ergm.bridge
	control.gof
	control.san
	control.simulate.ergm
	ctriple-ergmTerm
	Curve-ergmTerm
	cycle-ergmTerm
	cyclicalties-ergmTerm
	cyclicalweights-ergmTerm
	degcor-ergmTerm
	degcrossprod-ergmTerm
	degrange-ergmTerm
	degree-ergmTerm
	degree1.5-ergmTerm
	degreedist
	degreedist-ergmConstraint
	degrees-ergmConstraint
	density-ergmTerm
	diff-ergmTerm
	DiscUnif-ergmReference
	dsp-ergmTerm
	dyadcov-ergmTerm
	dyadnoise-ergmConstraint
	Dyads-ergmConstraint
	ecoli
	edgecov-ergmTerm
	edges-ergmConstraint
	edges-ergmTerm
	egocentric-ergmConstraint
	enformulate.curved-deprecated
	equalto-ergmTerm
	ergm
	ergm-options
	ergm-parallel
	ergm.allstats
	ergm.bridge.llr
	ergm.design
	ergm.getnetwork
	ergm.godfather
	ergmConstraint
	ergmHint
	ergmKeyword
	ergmMPLE
	ergmProposal
	ergmReference
	ergmTerm
	ergm_MCMC_sample
	ergm_plot.mcmc.list
	ergm_state_cache
	ergm_symmetrize
	esp-ergmTerm
	Exp-ergmTerm
	F-ergmTerm
	faux.desert.high
	faux.dixon.high
	faux.magnolia.high
	faux.mesa.high
	fix.curved
	fixallbut-ergmConstraint
	fixedas-ergmConstraint
	florentine
	For-ergmTerm
	g4
	geweke.diag.mv
	gof
	greaterthan-ergmTerm
	gwb1degree-ergmTerm
	gwb1dsp-ergmTerm
	gwb2degree-ergmTerm
	gwb2dsp-ergmTerm
	gwdegree-ergmTerm
	gwdsp-ergmTerm
	gwesp-ergmTerm
	gwidegree-ergmTerm
	gwnsp-ergmTerm
	gwodegree-ergmTerm
	hamming-ergmConstraint
	hamming-ergmTerm
	idegrange-ergmTerm
	idegree-ergmTerm
	idegree1.5-ergmTerm
	idegreedist-ergmConstraint
	idegrees-ergmConstraint
	ininterval-ergmTerm
	intransitive-ergmTerm
	is.curved
	is.dyad.independent
	is.valued
	isolatededges-ergmTerm
	isolates-ergmTerm
	istar-ergmTerm
	kapferer
	kstar-ergmTerm
	Label-ergmTerm
	localtriangle-ergmTerm
	Log-ergmTerm
	logLik.ergm
	logLikNull
	m2star-ergmTerm
	mcmc.diagnostics
	meandeg-ergmTerm
	mm-ergmTerm
	molecule
	mutual-ergmTerm
	nearsimmelian-ergmTerm
	network.list
	nodal_attributes
	nodecov-ergmTerm
	nodecovar-ergmTerm
	nodefactor-ergmTerm
	nodeicov-ergmTerm
	nodeicovar-ergmTerm
	nodeifactor-ergmTerm
	nodematch-ergmTerm
	NodematchFilter-ergmTerm
	nodemix-ergmTerm
	nodeocov-ergmTerm
	nodeocovar-ergmTerm
	nodeofactor-ergmTerm
	nparam
	nsp-ergmTerm
	observed-ergmConstraint
	odegrange-ergmTerm
	odegree-ergmTerm
	odegree1.5-ergmTerm
	odegreedist-ergmConstraint
	odegrees-ergmConstraint
	Offset-ergmTerm
	opentriad-ergmTerm
	ostar-ergmTerm
	param_names
	predict.formula
	Prod-ergmTerm
	rank_test.ergm
	receiver-ergmTerm
	S-ergmTerm
	samplk
	sampson
	san
	search.ergmTerms
	sender-ergmTerm
	simmelian-ergmTerm
	simmelianties-ergmTerm
	simulate.ergm
	simulate.formula
	smalldiff-ergmTerm
	smallerthan-ergmTerm
	snctrl
	sociality-ergmTerm
	sparse-ergmHint
	spectrum0.mvar
	StdNormal-ergmReference
	strat-ergmHint
	Sum-ergmTerm
	sum-ergmTerm
	summary.ergm
	summary.formula
	Symmetrize-ergmTerm
	threetrail-ergmTerm
	transitive-ergmTerm
	transitiveties-ergmTerm
	transitiveweights-ergmTerm
	triadcensus-ergmTerm
	triadic-ergmHint
	triangle-ergmTerm
	tripercent-ergmTerm
	ttriple-ergmTerm
	twopath-ergmTerm
	Unif-ergmReference
	update.network
	wtd.median
	Index

