## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, message = FALSE, fig.width = 7, fig.height = 3.5, comment = "#>" ) ## ----packages----------------------------------------------------------------- library(gamma) ## ----import------------------------------------------------------------------- # Import CNF files for calibration spc_dir <- system.file("extdata/AIX_NaI_1/calibration", package = "gamma") spc <- read(spc_dir) spc # Import a CNF file of background measurement bkg_dir <- system.file("extdata/AIX_NaI_1/background", package = "gamma") bkg <- read(bkg_dir) bkg ## ----signal------------------------------------------------------------------- # Spectrum pre-processing # Remove baseline for peak detection bsl <- spc |> signal_slice(-1:-40) |> signal_stabilize(f = sqrt) |> signal_smooth(method = "savitzky", m = 21) |> signal_correct() ## ----calibrate-BRIQUE--------------------------------------------------------- # Peak detection pks <- peaks_find(bsl[["BRIQUE"]]) # Set energy values set_energy(pks) <- c(238, NA, NA, NA, 1461, NA, NA, 2615) # Adjust the energy scale BRIQUE <- energy_calibrate(spc[["BRIQUE"]], pks) ## ----plot-BRIQUE, echo=FALSE-------------------------------------------------- plot(BRIQUE, pks) + ggplot2::theme_bw() ## ----calibrate-C341----------------------------------------------------------- # Spectrum pre-processing and peak detection pks <- peaks_find(bsl[["C341"]]) # Set energy values set_energy(pks) <- c(238, NA, NA, NA, 1461, NA, 2615) # Adjust the energy scale C341 <- energy_calibrate(spc[["C341"]], pks) ## ----plot-C341, echo=FALSE---------------------------------------------------- plot(C341, pks) + ggplot2::theme_bw() ## ----calibrate-C347----------------------------------------------------------- # Spectrum pre-processing and peak detection pks <- peaks_find(bsl[["C347"]], span = 10) # Set energy values set_energy(pks) <- c(238, NA, NA, NA, NA, 1461, NA, 2615) # Adjust the energy scale C347 <- energy_calibrate(spc[["C347"]], pks) ## ----plot-C347, echo=FALSE---------------------------------------------------- plot(C347, pks) + ggplot2::theme_bw() ## ----calibrate-GOU------------------------------------------------------------ # Spectrum pre-processing and peak detection pks <- peaks_find(bsl[["GOU"]]) # Set energy values set_energy(pks) <- c(238, NA, NA, NA, 1461, NA, NA, 2615) # Adjust the energy scale GOU <- energy_calibrate(spc[["GOU"]], pks) ## ----plot-GOU, echo=FALSE----------------------------------------------------- plot(GOU, pks) + ggplot2::theme_bw() ## ----calibrate-PEP------------------------------------------------------------ # Spectrum pre-processing and peak detection pks <- peaks_find(bsl[["PEP"]]) # Set energy values set_energy(pks) <- c(238, NA, NA, NA, 1461, NA, NA, 2615) # Adjust the energy scale PEP <- energy_calibrate(spc[["PEP"]], pks) ## ----plot-PEP, echo=FALSE----------------------------------------------------- plot(PEP, pks) + ggplot2::theme_bw() ## ----calibrate-bkg------------------------------------------------------------ # Pb212, K40, Tl208 lines <- data.frame( channel = c(86, 496, 870), energy = c(238, 1461, 2615) ) bkg_scaled <- energy_calibrate(bkg, lines = lines) ## ----plot-bkg, echo=FALSE----------------------------------------------------- plot(bkg_scaled, xaxis = "energy", yaxis = "rate") + ggplot2::geom_vline(xintercept = c(238, 1461, 2615), linetype = 3) + ggplot2::theme_bw() ## ----calibrate-spc------------------------------------------------------------ spc_scaled <- list(BRIQUE, C341, C347, GOU, PEP) spc_scaled <- methods::as(spc_scaled, "GammaSpectra") spc_scaled ## ----integrate-Ni------------------------------------------------------------- # Integration range (in keV) Ni_range <- c(200, 2800) # Integrate background spectrum Ni_bkg <- signal_integrate( object = bkg_scaled, range = Ni_range, energy = FALSE) # Integrate reference spectra Ni_spc <- signal_integrate( object = spc_scaled, range = Ni_range, background = Ni_bkg, energy = FALSE, simplify = TRUE) ## ----integrate-NiEi----------------------------------------------------------- # Integration range (in keV) NiEi_range <- c(200, 2800) # Integrate background spectrum NiEi_bkg <- signal_integrate( object = bkg_scaled, range = NiEi_range, energy = TRUE) # Integrate reference spectra NiEi_signal <- signal_integrate( object = spc_scaled, range = NiEi_range, background = NiEi_bkg, energy = TRUE, simplify = TRUE) ## ----------------------------------------------------------------------------- # Get reference dose rates data("clermont") doses <- clermont[, c("gamma_dose", "gamma_error")] ## ----echo = FALSE------------------------------------------------------------- knitr::kable(clermont) ## ----------------------------------------------------------------------------- # Metadata info <- list( laboratory = "CEREGE", instrument = "InSpector 1000", detector = "NaI", authors = "CEREGE Luminescence Team" ) ## ----------------------------------------------------------------------------- # Build the calibration curve AIX_NaI <- dose_fit( object = spc_scaled, background = bkg_scaled, doses = doses, range_Ni = Ni_range, range_NiEi = NiEi_range, details = info ) AIX_NaI ## ----------------------------------------------------------------------------- # show summary summarise(AIX_NaI) ## ----calibration, fig.width=3.5, fig.show='hold'------------------------------ # plot calibration curves plot(AIX_NaI, energy = FALSE) + ggplot2::theme_bw() plot(AIX_NaI, energy = TRUE) + ggplot2::theme_bw() ## ----eval=FALSE--------------------------------------------------------------- # save(AIX_NaI, file = "/_NaI_DoseRate_Calibration.rda") ## ----save, eval=FALSE, echo=FALSE--------------------------------------------- # # DANGER ZONE # # AIX_NaI_1 <- AIX_NaI # # usethis::use_data(AIX_NaI_1, internal = FALSE, overwrite = FALSE) ## ----check-Ni, echo=FALSE, fig.width=3.5, fig.show='hold'--------------------- Ni_residuals <- get_residuals(AIX_NaI[["Ni"]]) # Residuals vs fitted values ggplot2::ggplot(Ni_residuals, ggplot2::aes(x = fitted, y = residuals)) + ggplot2::geom_hline(yintercept = 0, linetype = 3) + ggplot2::geom_segment(ggplot2::aes(x = fitted, xend = fitted, y = 0, yend = residuals)) + ggplot2::geom_point() + ggplot2::theme_bw() + ggplot2::labs(title = "Residuals vs fitted values", x = "Fitted values", y = "Residuals") # Std. residuals vs fitted values ggplot2::ggplot(Ni_residuals, ggplot2::aes(x = fitted, y = standardized)) + ggplot2::geom_hline(yintercept = 0, linetype = 3) + ggplot2::geom_hline(yintercept = c(-2, 2), linetype = 2) + ggplot2::geom_segment(ggplot2::aes(x = fitted, xend = fitted, y = 0, yend = standardized)) + ggplot2::geom_point() + ggplot2::theme_bw() + ggplot2::labs(title = "Std. residuals vs fitted values", x = "Fitted values", y = "Standardized residuals") # Normal QQ plot of standardized residuals ggplot2::ggplot(Ni_residuals, ggplot2::aes(sample = standardized)) + ggplot2::geom_abline(slope = 1, intercept = 0) + ggplot2::geom_qq_line(colour = "red") + ggplot2::geom_qq() + ggplot2::theme_bw() + ggplot2::labs(title = "Normal QQ plot", x = "Theoretical quantiles", y = "Standardize residuals") # Cook's distance # ggplot2::ggplot(Ni_residuals, ggplot2::aes(x = name, y = cook)) + # ggplot2::geom_hline(yintercept = 0, linetype = 3) + # ggplot2::geom_hline(yintercept = 1, linetype = 2) + # ggplot2::geom_segment(ggplot2::aes(x = name, xend = name, # y = 0, yend = cook)) + # ggplot2::geom_point() + # ggplot2::theme_bw() + # ggplot2::labs(title = "Cook's distance", # x = "Observation", y = "D") ## ----check-NiEi, echo=FALSE, fig.width=3.5, fig.show='hold'------------------- NiEi_residuals <- get_residuals(AIX_NaI[["NiEi"]]) # Residuals vs fitted values ggplot2::ggplot(NiEi_residuals, ggplot2::aes(x = fitted, y = residuals)) + ggplot2::geom_hline(yintercept = 0, linetype = 3) + ggplot2::geom_segment(ggplot2::aes(x = fitted, xend = fitted, y = 0, yend = residuals)) + ggplot2::geom_point() + ggplot2::theme_bw() + ggplot2::labs(title = "Residuals vs fitted values", x = "Fitted values", y = "Residuals") # Std. residuals vs fitted values ggplot2::ggplot(NiEi_residuals, ggplot2::aes(x = fitted, y = standardized)) + ggplot2::geom_hline(yintercept = 0, linetype = 3) + ggplot2::geom_hline(yintercept = c(-2, 2), linetype = 2) + ggplot2::geom_segment(ggplot2::aes(x = fitted, xend = fitted, y = 0, yend = standardized)) + ggplot2::geom_point() + ggplot2::theme_bw() + ggplot2::labs(title = "Std. residuals vs fitted values", x = "Fitted values", y = "Standardized residuals") # Normal QQ plot of standardized residuals ggplot2::ggplot(NiEi_residuals, ggplot2::aes(sample = standardized)) + ggplot2::geom_abline(slope = 1, intercept = 0) + ggplot2::geom_qq_line(colour = "red") + ggplot2::geom_qq() + ggplot2::theme_bw() + ggplot2::labs(title = "Normal QQ plot", x = "Theoretical quantiles", y = "Standardize residuals") # Cook's distance # ggplot2::ggplot(NiEi_residuals, ggplot2::aes(x = name, y = cook)) + # ggplot2::geom_hline(yintercept = 0, linetype = 3) + # ggplot2::geom_hline(yintercept = 1, linetype = 2) + # ggplot2::geom_segment(ggplot2::aes(x = name, xend = name, # y = 0, yend = cook)) + # ggplot2::geom_point() + # ggplot2::theme_bw() + # ggplot2::labs(title = "Cook's distance", # x = "Observation", y = "D") ## ----------------------------------------------------------------------------- # Import CNF files for dose rate prediction test_dir <- system.file("extdata/AIX_NaI_1/test", package = "gamma") test <- read(test_dir) ## ----predict------------------------------------------------------------------ # Inspect spectra plot(test, yaxis = "rate") + ggplot2::theme_bw() ## ----------------------------------------------------------------------------- # Pb212, K40, Tl208 pks <- data.frame( channel = c(86, 490, 870), energy = c(238, 1461, 2615) ) |> as("PeakPosition") ## energy calibrate test <- energy_calibrate(test, pks) ## check the calibration for one curve plot(test[[1]], pks) + ggplot2::theme_bw() ## show all energy calibrated spectra # Inspect spectra plot(test, xaxis = "energy", yaxis = "rate") + ggplot2::theme_bw() ## ----------------------------------------------------------------------------- rates <- dose_predict(AIX_NaI, test, sigma = 1.96) rates ## ----session-info, echo=FALSE------------------------------------------------- sessionInfo()