## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(indicspecies) ## ----------------------------------------------------------------------------- data(wetland) ## ----------------------------------------------------------------------------- groups <- c(rep(1, 17), rep(2, 14), rep(3,10)) groups ## ----------------------------------------------------------------------------- wetkm <- kmeans(wetland, centers=3) groupskm <- wetkm$cluster groupskm ## ----------------------------------------------------------------------------- indval <- multipatt(wetland, groups, control = how(nperm=999)) ## ----------------------------------------------------------------------------- summary(indval) ## ----------------------------------------------------------------------------- summary(indval, indvalcomp=TRUE) ## ----------------------------------------------------------------------------- summary(indval, alpha=1) ## ----------------------------------------------------------------------------- indval$sign ## ----------------------------------------------------------------------------- wetlandpa <- ifelse(wetland>0,1,0) phi <- multipatt(wetlandpa, groups, func = "r", control = how(nperm=999)) ## ----------------------------------------------------------------------------- phi <- multipatt(wetlandpa, groups, func = "r.g", control = how(nperm=999)) ## ----------------------------------------------------------------------------- summary(phi) ## ----------------------------------------------------------------------------- round(head(phi$str),3) ## ----------------------------------------------------------------------------- round(head(indval$str),3) ## ----------------------------------------------------------------------------- indvalori <- multipatt(wetland, groups, duleg = TRUE, control = how(nperm=999)) summary(indvalori) ## ----------------------------------------------------------------------------- indvalrest <- multipatt(wetland, groups, max.order = 2, control = how(nperm=999)) summary(indvalrest) ## ----------------------------------------------------------------------------- indvalrest <- multipatt(wetland, groups, restcomb = c(1,2,3,5,6), control = how(nperm=999)) summary(indvalrest) ## ----------------------------------------------------------------------------- indvalrest$sign ## ----------------------------------------------------------------------------- prefstat <- strassoc(wetland, cluster=groups, func="A.g") round(head(prefstat),3) ## ----------------------------------------------------------------------------- prefstat <- strassoc(wetland, cluster=groups, func="A.g", nboot.ci = 199) round(head(prefstat$lowerCI),3) round(head(prefstat$upperCI),3) ## ----------------------------------------------------------------------------- prefsign <- signassoc(wetland, cluster=groups, alternative = "two.sided", control = how(nperm=199)) head(prefsign) ## ----------------------------------------------------------------------------- coverage(wetland, indvalori) ## ----------------------------------------------------------------------------- coverage(wetland, indvalori, At = 0.8, alpha = 0.05) ## ----fig = TRUE, fig.width = 5, fig.height = 5-------------------------------- plotcoverage(x=wetland, y=indvalori, group="1", lty=1) plotcoverage(x=wetland, y=indvalori, group="2", lty=2, col="blue", add=TRUE) plotcoverage(x=wetland, y=indvalori, group="3", lty=3, col="red", add=TRUE) legend(x = 0.1, y=30, legend=c("group 1","group 2", "group 3"), lty=c(1,2,3), col=c("black","blue","red"), bty="n") ## ----------------------------------------------------------------------------- wetcomb <- combinespecies(wetland, max.order = 2)$XC dim(wetcomb) ## ----------------------------------------------------------------------------- indvalspcomb <- multipatt(wetcomb, groups, duleg = TRUE, control = how(nperm=999)) summary(indvalspcomb, indvalcomp = TRUE) ## ----------------------------------------------------------------------------- sc <- indicators(X=wetland, cluster=groups, group=2, max.order = 3, verbose=TRUE, At=0.5, Bt=0.2) ## ----------------------------------------------------------------------------- print(sc, sqrtIVt = 0.6) ## ----------------------------------------------------------------------------- coverage(sc) ## ----------------------------------------------------------------------------- coverage(sc, At=0.8, alpha =0.05) ## ----fig = TRUE, fig.width = 5, fig.height = 5-------------------------------- plotcoverage(sc) plotcoverage(sc, max.order=1, add=TRUE, lty=2, col="red") legend(x=0.1, y=20, legend=c("Species combinations","Species singletons"), lty=c(1,2), col=c("black","red"), bty="n") ## ----------------------------------------------------------------------------- sc2 <- pruneindicators(sc, At=0.8, Bt=0.2, verbose=TRUE) print(sc2) ## ----------------------------------------------------------------------------- p <- predict(sc2, wetland) ## ----------------------------------------------------------------------------- p <- predict(sc2) ## ----------------------------------------------------------------------------- pcv <- predict(sc2, cv=TRUE) ## ----------------------------------------------------------------------------- data.frame(Group2 = as.numeric(wetkm$cluster==2), Prob = p, Prob_CV = pcv)