## ----echo=FALSE--------------------------------------------------------------- required <- c("survey", "huxtable", "broom", "lme4", "quantreg") if (!all(sapply(required, requireNamespace, quietly = TRUE))) knitr::opts_chunk$set(eval = FALSE) knitr::opts_chunk$set(message = FALSE, warning = FALSE, fig.width = 6, fig.height = 4, dpi = 125, render = knitr::normal_print) library(jtools) ## ----------------------------------------------------------------------------- library(jtools) # Load jtools data(movies) # Telling R we want to use this data fit <- lm(metascore ~ imdb_rating + log(us_gross) + genre5, data = movies) summ(fit) ## ----render = 'knit_print'---------------------------------------------------- summ(fit) ## ----------------------------------------------------------------------------- summ(fit, robust = "HC1") ## ----------------------------------------------------------------------------- summ(fit, scale = TRUE) ## ----------------------------------------------------------------------------- summ(fit, scale = TRUE, n.sd = 2) ## ----------------------------------------------------------------------------- summ(fit, center = TRUE) ## ----------------------------------------------------------------------------- summ(fit, confint = TRUE, digits = 3) ## ----------------------------------------------------------------------------- summ(fit, confint = TRUE, ci.width = .5) ## ----------------------------------------------------------------------------- summ(fit, confint = TRUE, pvals = FALSE) ## ----------------------------------------------------------------------------- fitg <- glm(metascore/100 ~ imdb_rating + log(us_gross) + genre5, data = movies, family = quasibinomial()) summ(fitg) ## ----------------------------------------------------------------------------- summ(fitg, exp = TRUE) ## ----message = FALSE, warning = FALSE----------------------------------------- library(lme4) fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy) summ(fm1) ## ----------------------------------------------------------------------------- effect_plot(fitg, pred = imdb_rating, interval = TRUE, plot.points = TRUE, jitter = 0.05) ## ----------------------------------------------------------------------------- plot_summs(fit) ## ----------------------------------------------------------------------------- plot_summs(fit, robust = TRUE) ## ----------------------------------------------------------------------------- plot_summs(fit, inner_ci_level = .9) ## ----------------------------------------------------------------------------- plot_summs(fit, plot.distributions = TRUE, inner_ci_level = .9) ## ----------------------------------------------------------------------------- fit2 <- lm(metascore ~ imdb_rating + log(us_gross) + log(budget) + genre5, data = movies) plot_summs(fit, fit2) ## ----------------------------------------------------------------------------- plot_summs(fit, fit2, plot.distributions = TRUE) ## ----------------------------------------------------------------------------- plot_summs(fit, fit, fit, robust = list(FALSE, "HC0", "HC5"), model.names = c("OLS", "HC0", "HC5")) ## ----eval = FALSE------------------------------------------------------------- # export_summs(fit, fit2, scale = TRUE) ## ----echo = FALSE, results = 'asis'------------------------------------------- huxtable::print_html(export_summs(fit, fit2, scale = TRUE)) ## ----eval = FALSE------------------------------------------------------------- # export_summs(fit, fit2, scale = TRUE, # error_format = "[{conf.low}, {conf.high}]") ## ----echo = FALSE, results = 'asis'------------------------------------------- huxtable::print_html(export_summs(fit, fit2, scale = TRUE, error_format = "[{conf.low}, {conf.high}]")) ## ----eval = FALSE------------------------------------------------------------- # export_summs(fit, fit2, scale = TRUE, to.file = "docx", file.name = "test.docx") ## ----------------------------------------------------------------------------- summ(fit, model.info = FALSE, model.fit = FALSE) ## ----------------------------------------------------------------------------- summ(fit, model.info = FALSE, digits = 5) ## ----------------------------------------------------------------------------- summ(fit, model.info = FALSE, digits = 1) ## ----------------------------------------------------------------------------- options("jtools-digits" = 2) summ(fit, model.info = FALSE) ## ----echo = F----------------------------------------------------------------- options("jtools-digits" = NULL) ## ----------------------------------------------------------------------------- j <- summ(fit, digits = 3) j$coeftable ## ----eval = F----------------------------------------------------------------- # set_summ_defaults(digits = 2, pvals = FALSE, robust = "HC3") ## ----------------------------------------------------------------------------- summ(fit, vifs = TRUE)