## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 5, fig.height = 6 ) ## ----mf_basemap, message=FALSE, warning=FALSE--------------------------------- library(mapsf) # import the sample data set mtq <- mf_get_mtq() # set a theme mf_theme("iceberg") # plot a shadow mf_shadow(mtq) # plot municipalities mf_map(mtq, type = "base", add = TRUE) # layout mf_layout( title = "Martinique", credits = paste0( "Sources: IGN, 2018\n", "mapsf ", packageVersion("mapsf") ) ) ## ----mf_prop, message=FALSE, warning=FALSE------------------------------------ library(mapsf) # import the sample data set mtq <- mf_get_mtq() # set a theme mf_theme("darkula") # plot a shadow mf_shadow(mtq) # plot municipalities mf_map(mtq, add = TRUE) # plot population mf_map( x = mtq, var = "POP", type = "prop", inches = 0.25, col = "brown4", leg_pos = "topright", leg_adj = c(0, -2), leg_title = "Total population" ) # layout mf_layout( title = "Population Distribution in Martinique", credits = paste0( "Sources: Insee and IGN, 2018\n", "mapsf ", packageVersion("mapsf") ) ) ## ----mf_map_c----------------------------------------------------------------- library(mapsf) # import the sample data set mtq <- mf_get_mtq() # population density (inhab./km2) using sf::st_area() mtq$POPDENS <- 1e6 * mtq$POP / sf::st_area(mtq) # set a theme mf_theme("green") # plot population density mf_map( x = mtq, var = "POPDENS", type = "choro", breaks = "geom", nbreaks = 5, pal = "Greens", border = "white", lwd = 0.5, leg_pos = "topright", leg_title = "Population Density\n(people per km2)" ) # layout mf_layout( title = "Population Distribution in Martinique", credits = paste0( "Sources: Insee and IGN, 2018\n", "mapsf ", packageVersion("mapsf") ) ) ## ----mf_map_t----------------------------------------------------------------- library(mapsf) # import the sample data set mtq <- mf_get_mtq() # set theme mf_theme("dark") # plot administrative status mf_map( x = mtq, var = "STATUS", type = "typo", pal = c("aquamarine4", "yellow3", "wheat"), lwd = .5, val_order = c( "Prefecture", "Sub-prefecture", "Simple municipality" ), leg_pos = "topright", leg_adj = c(0, 1), leg_title = "" ) # labels for a few municipalities mf_label( x = mtq[mtq$STATUS != "Simple municipality", ], var = "LIBGEO", cex = 0.9, halo = TRUE, r = 0.15 ) # layout mf_layout( title = "Administrative Status", credits = paste0( "Sources: Insee and IGN, 2018\n", "mapsf ", packageVersion("mapsf") ) ) ## ----mf_map_pc, fig.width=5--------------------------------------------------- library(mapsf) # import the sample data set mtq <- mf_get_mtq() # set theme mf_theme("candy") # Plot the municipalities and expand the map space on the right mf_map(x = mtq, expandBB = c(0, 0, 0, .15)) # Plot symbols with choropleth coloration mf_map( x = mtq, var = c("POP", "MED"), type = "prop_choro", border = "grey50", lwd = 1, leg_pos = c("topright"), leg_title = c("Population", "Median Income\n(in euros)"), breaks = "equal", nbreaks = 4, pal = "Greens", leg_val_rnd = c(0, -2), leg_frame = TRUE ) # layout mf_layout( title = "Population & Wealth in Martinique, 2015", credits = paste0( "Sources: Insee and IGN, 2018\n", "mapsf ", packageVersion("mapsf") ), frame = TRUE ) ## ----mf_map_pt, fig.width=5--------------------------------------------------- library(mapsf) # import the sample data set mtq <- mf_get_mtq() # set theme mf_theme("ink") # plot the municipalities and expand the map space on the right mf_map(x = mtq, expandBB = c(0, 0, 0, .15)) # plot symbols with choropleth coloration mf_map( x = mtq, var = c("POP", "STATUS"), type = "prop_typo", symbol = "square", border = "white", lwd = .5, leg_pos = "topright", leg_title = c("Population", "Administrative\nStatus"), val_order = c( "Prefecture", "Sub-prefecture", "Simple municipality" ) ) # layout mf_layout( title = "Population Distribution in Martinique", credits = paste0( "Sources: Insee and IGN, 2018\n", "mapsf ", packageVersion("mapsf") ) ) ## ----mf_label----------------------------------------------------------------- library(mapsf) # import the sample data set mtq <- mf_get_mtq() # set theme my_theme <- list( name = "mytheme", bg = "lightblue1", fg = "darkseagreen4", mar = c(0, 0, 0, 0), tab = TRUE, pos = "left", inner = TRUE, line = 1, cex = .9, font = 3 ) mf_theme(my_theme) # plot municipalities mf_map(mtq, col = "#e4e9de", border = "darkseagreen4") # plot labels mf_label( x = mtq, var = "LIBGEO", col = "black", cex = 0.7, font = 4, halo = TRUE, bg = "white", r = 0.1, overlap = FALSE, lines = FALSE ) # layout mf_layout( title = "Municipalities of Martinique", credits = paste0( "Sources: Insee and IGN, 2018\n", "mapsf ", packageVersion("mapsf") ), arrow = FALSE ) # north arrow mf_arrow(pos = "topright") ## ----mf_grad------------------------------------------------------------------ library(mapsf) # import the sample data set mtq <- mf_get_mtq() # import the csv file embedded in mapsf mob <- read.csv(system.file("csv/mob.csv", package = "mapsf")) # Select links from Fort-de-France (97209)) mob_97209 <- mob[mob$i == 97209, ] # create an sf object of links mob_links <- mf_get_links(x = mtq, df = mob_97209) # set theme mf_theme("jsk") # Plot the municipalities mf_map(mtq) # plot graduated links mf_map( x = mob_links, var = "fij", type = "grad", breaks = c(100, 500, 1000, 4679.0), lwd = c(1, 4, 8), leg_pos = "topright", leg_title = "Nb. of\nCommuters", col = "red4", leg_frame = TRUE ) # map layout mf_layout( title = "Commuting to Fort-de-France", credits = paste0( "Sources: Insee and IGN, 2018\n", "mapsf ", packageVersion("mapsf") ), arrow = FALSE ) ## ----echo = FALSE------------------------------------------------------------- mf_theme("default")