## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval = FALSE------------------------------------------------------------- # # Load required libraries # library(dplyr) # # # Generate example data using Calculate.Lag function # set.seed(123) # time <- 1:10 # biomass <- c(0.1, 0.3, 0.7, 1.5, 3.0, 5.0, 8.0, 12.0, 18.0, 25.0) # tangent.point <- c(0.3, 0.5, 0.9, 2.0, 4.0, 6.0, 9.0, 12.0, 17.0, 24.0) # predicted.data <- c(0.1, 0.4, 0.8, 1.6, 3.2, 6.0, 8.8, 12.5, 18.2, 25.1) # threshold <- c(0.3, 0.8, 1.3, 2.3, 4.3, 7.0, 10.2, 15.0, 21.0, 28.0) # N0 <- c(0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1) # second.deriv.b <- c(0.02, 0.04, 0.09, 0.2, 0.4, 0.6, 0.9, 1.2, 1.7, 2.4) # line.intercept <- c(0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1) # line.slope <- c(0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2) # # data_new <- data.frame( # time = time, # biomass = biomass, # tangent.point = tangent.point, # predicted.data = predicted.data, # threshold = threshold, # N0 = N0, # second.deriv.b = second.deriv.b, # line.intercept = line.intercept, # line.slope = line.slope # ) # # # Plot the growth curve with lag information # plot <- plot_lag_fit(data_new, print_lag_info = TRUE, log10_transform = TRUE) # # # Print the plot # print(plot)