--- title: "mirai - Parallel Integration" vignette: > %\VignetteIndexEntry{mirai - Parallel Integration} %\VignetteEngine{litedown::vignette} %\VignetteEncoding{UTF-8} --- ### Parallel Integration `mirai` provides an alternative communications backend for R. This functionality was developed to fulfil a request by R Core at R Project Sprint 2023. `make_cluster()` creates a cluster object of class 'miraiCluster', which is fully-compatible with `parallel` cluster types. + Specify 'n' to launch nodes on the local machine. + Specify 'url' for receiving connections from remote nodes. + Optionally, specify 'remote' to launch remote daemons using a remote configuration generated by `remote_config()` or `ssh_config()`. Created clusters may be used for any function in the `parallel` base package such as `parallel::clusterApply()` or `parallel::parLapply()`, or the load-balanced versions such as `parallel::parLapplyLB()`. ``` r library(mirai) cl <- make_cluster(4) cl #> < miraiCluster | ID: `0` nodes: 4 active: TRUE > parallel::parLapply(cl, iris, mean) #> $Sepal.Length #> [1] 5.843333 #> #> $Sepal.Width #> [1] 3.057333 #> #> $Petal.Length #> [1] 3.758 #> #> $Petal.Width #> [1] 1.199333 #> #> $Species #> [1] NA ``` `status()` may be called on a 'miraiCluster` to query the number of connected nodes at any time. ``` r status(cl) #> $connections #> [1] 4 #> #> $daemons #> [1] "abstract://4fc130b92777dbce706aaaa8" stop_cluster(cl) ``` Making a cluster specifying 'url' without 'remote' causes the shell commands for manual deployment of nodes to be printed to the console. ``` r cl <- make_cluster(n = 2, url = host_url()) #> Shell commands for deployment on nodes: #> #> [1] #> Rscript -e 'mirai::daemon("tcp://hostname:38547",rs=c(10407,987529368,-709709383,-455625178,-350041489,-644694556,1812636565))' #> #> [2] #> Rscript -e 'mirai::daemon("tcp://hostname:38547",rs=c(10407,2025237564,31519412,1895592412,1818446374,-452272375,1687922752))' stop_cluster(cl) ``` ### Foreach Integration A 'miraiCluster' may also be registered by [`doParallel`](https://cran.r-project.org/package=doParallel) for use with the [`foreach`](https://cran.r-project.org/package=foreach) package. Running some parallel examples for the `foreach()` function: ``` r library(foreach) library(iterators) cl <- make_cluster(4) doParallel::registerDoParallel(cl) # normalize the rows of a matrix m <- matrix(rnorm(9), 3, 3) foreach(i = 1:nrow(m), .combine = rbind) %dopar% (m[i, ] / mean(m[i, ])) #> [,1] [,2] [,3] #> result.1 0.5860066 1.0688031 1.3451903 #> result.2 0.6856291 -0.1415699 2.4559407 #> result.3 0.8224936 1.6700118 0.5074946 # simple parallel matrix multiply a <- matrix(1:16, 4, 4) b <- t(a) foreach(b = iter(b, by='col'), .combine = cbind) %dopar% (a %*% b) #> [,1] [,2] [,3] [,4] #> [1,] 276 304 332 360 #> [2,] 304 336 368 400 #> [3,] 332 368 404 440 #> [4,] 360 400 440 480 ```