## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) set.seed(42) ## ----message=FALSE------------------------------------------------------------ library(mpmsim) library(dplyr) library(Rage) library(ggplot2) library(Rcompadre) ## ----------------------------------------------------------------------------- rand_lefko_mpm(n_stages = 3, fecundity = 5, archetype = 2) ## ----------------------------------------------------------------------------- lower_reprod <- matrix(c( 0, 0, 0, 0, 0, 0, 0, 0, 0 ), nrow = 3, ncol = 3, byrow = TRUE) upper_reprod <- matrix(c( 0, 4, 20, 0, 0, 0, 0, 0, 0 ), nrow = 3, ncol = 3, byrow = TRUE) rand_lefko_mpm( n_stages = 3, fecundity = list(lower_reprod, upper_reprod), archetype = 2 ) ## ----------------------------------------------------------------------------- myMatrices <- rand_lefko_set( n = 100, n_stages = 3, fecundity = 12, archetype = 4, output = "Type1" ) ## ----------------------------------------------------------------------------- # Obtain the matrices x <- matA(myMatrices) # Calculate lambda for each matrix lambdaVals <- sapply(x, popdemo::eigs, what = "lambda") summary(lambdaVals) ## ----message=FALSE------------------------------------------------------------ library(popdemo) constrain_df <- data.frame( fun = "eigs", arg = "lambda", lower = 0.9, upper = 1.1 ) myMatrices <- rand_lefko_set( n = 100, n_stages = 3, fecundity = 12, constraint = constrain_df, archetype = 4, output = "Type1" ) ## ----------------------------------------------------------------------------- # Obtain the matrices x <- matA(myMatrices) # Calculate lambda for each matrix lambdaVals <- sapply(x, popdemo::eigs, what = "lambda") summary(lambdaVals)