## ----setup, echo=FALSE, results='hide', warning=FALSE--------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", message = FALSE, warning = FALSE, fig.align = 'center', fig.width = 8, fig.height = 6, dpi = 36, tidy = FALSE, verbose = FALSE, # run when NASIS is defined or when R_SOILDB_SKIP_LONG_EXAMPLES is FALSE eval = isTRUE(try(local_NASIS_defined(), silent = TRUE)) || !as.logical(Sys.getenv("R_SOILDB_SKIP_LONG_EXAMPLES", unset = "TRUE")) ) options(width = 100, stringsAsFactors = FALSE) ## ----eval = FALSE--------------------------------------------------------------------------------- # install.packages(c('soilDB', 'terra', 'sf')) ## ----eval = FALSE--------------------------------------------------------------------------------- # install.packages(c('soilDB', 'terra', 'sf'), # repos = c('https://ncss-tech.r-universe.dev', # 'https://rspatial.r-universe.dev', # 'https://r-spatial.r-universe.dev') # ) ## ----eval = FALSE--------------------------------------------------------------------------------- # # select gSSURGO grid, 30m resolution # x <- mukey.wcs(aoi = aoi, db = 'gssurgo', ...) # # # select gNATSGO grid, 30m resolution # x <- mukey.wcs(aoi = aoi, db = 'gnatsgo', ...) # # # select RSS grid, 10m resolution # x <- mukey.wcs(aoi = aoi, db = 'RSS', ...) # # # select STATSGO2 grid, 300m resolution # x <- mukey.wcs(aoi = aoi, db = 'statsgo', ...) ## ----eval = FALSE--------------------------------------------------------------------------------- # # select various ISSR-800 grids, details below # x <- ISSR800.wcs(aoi = aoi, var = 'paws') ## ----fig.width = 5, fig.height = 5---------------------------------------------------------------- library(terra) library(soilDB) # example point, WGS84 coordinates p <- vect( data.frame( lon = -118.55639, lat = 36.52578 ), crs = "EPSG:4326" ) # 1000m buffer applied to WGS84 coordinate # radius defined in meters b <- buffer(p, 1000) # query WCS # result is in EPSG:5070 mu <- mukey.wcs(b, db = 'gSSURGO') # inspect plot(mu, legend = FALSE, axes = FALSE, main = metags(mu)['description']) # add buffer, after transforming to mukey grid CRS plot(project(b, "EPSG:5070"), add = TRUE) # add original point, after transforming to mukey grid CRS plot(project(p, "EPSG:5070"), add = TRUE, pch = 16) ## ----fig.width = 8, fig.height = 7---------------------------------------------------------------- library(sf) library(soilDB) library(terra) # paste the five coordinates comprising the BBOX polygon here bb <- '-118.6609 36.4820,-118.6609 36.5972,-118.3979 36.5972,-118.3979 36.4820,-118.6609 36.4820' # convert WKT string -> sfc geometry wkt <- sprintf('POLYGON((%s))', bb) x <- st_as_sfc(wkt) # set coordinate reference system as GCS/WGS84 st_crs(x) <- 4326 # query WCS mu <- mukey.wcs(x, db = 'gSSURGO') # inspect plot(mu, legend = FALSE, axes = FALSE, main = metags(mu)['description']) # add original BBOX, after transforming to mukey grid CRS plot(st_transform(x, 5070), add = TRUE) ## ------------------------------------------------------------------------------------------------- # make a bounding box and assign a CRS (4326: GCS, WGS84) a <- st_bbox( c(xmin = -114.16, xmax = -114.08, ymin = 47.65, ymax = 47.68), crs = st_crs(4326) ) # fetch gSSURGO map unit keys at native resolution (30m) mu <- mukey.wcs(aoi = a, db = 'gssurgo') # check: print(mu) plot( mu, main = 'gSSURGO map unit keys', sub = 'Albers Equal Area Projection', axes = FALSE, legend = FALSE ) ## ------------------------------------------------------------------------------------------------- # because mu is a SpatRaster, result is a SpatVector object (GCS WGS84) p <- SDA_spatialQuery(mu, what = 'mupolygon', geomIntersection = TRUE) ## ------------------------------------------------------------------------------------------------- p <- project(p, crs(mu)) ## ----fig.width = 8, fig.height = 7---------------------------------------------------------------- plot(mu, main = 'gSSURGO Grid (WCS)\nSSURGO Polygons (SDA)', axes = FALSE, legend = FALSE) plot(p, add = TRUE, border = 'white') mtext('CONUS Albers Equal Area Projection (EPSG:5070)', side = 1, line = 1) ## ------------------------------------------------------------------------------------------------- # make a bounding box (in California) and assign a CRS (GCS WGS84 / EPSG:4326) a.CA <- st_bbox(c( xmin = -121, xmax = -120, ymin = 37, ymax = 38 ), crs = st_crs(4326)) # fetch gSSURGO map unit keys at ~800m # nearest-neighbor resampling = this is a "preview" # result is a SpatRaster object x.800 <- mukey.wcs(aoi = a.CA, db = 'gssurgo', res = 800) plot( x.800, main = 'A Preview of gSSURGO Map Unit Keys', sub = 'Albers Equal Area Projection (800m)\nnearest-neighbor resampling', axes = FALSE, legend = FALSE ) ## ----fig.width=8, fig.height=6-------------------------------------------------------------------- # Coweeta Hydrologic Laboratory extent; specified in EPSG:5070 a <- st_bbox( c(xmin = 1129000, xmax = 1135000, ymin = 1403000, ymax = 1411000), crs = st_crs(5070) ) # convert boundary sf polygon a <- st_as_sfc(a) # gSSURGO grid: 30m resolution (x <- mukey.wcs(a, db = 'gSSURGO', res = 30)) # gNATSGO grid: 30m resolution (y <- mukey.wcs(a, db = 'gNATSGO', res = 30)) # RSS grid: 10m resolution (z <- mukey.wcs(a, db = 'RSS', res = 10)) # graphical comparison par(mfcol = c(1, 3)) # gSSURGO plot( x, axes = FALSE, legend = FALSE, main = metags(x)['description'] ) plot(a, add = TRUE) # gNATSGO plot( y, axes = FALSE, legend = FALSE, main = metags(y)['description'] ) plot(a, add = TRUE) # RSS plot( z, axes = FALSE, legend = FALSE, main = metags(z)['description'], ext = x ) plot(a, add = TRUE) ## ----fig.width=8, fig.height=6-------------------------------------------------------------------- (statsgo <- mukey.wcs(a, db = 'statsgo', res = 300)) # graphical comparison par(mfcol = c(1, 2)) # gSSURGO plot( x, axes = FALSE, legend = FALSE, main = metags(x)['description'] ) # STATSGO plot( statsgo, axes = FALSE, legend = FALSE, main = metags(statsgo)['description'] ) ## ----fig.width = 6.5, fig.height=5---------------------------------------------------------------- # paste your BBOX text here bb <- '-159.7426 21.9059,-159.7426 22.0457,-159.4913 22.0457,-159.4913 21.9059,-159.7426 21.9059' # convert WKT string -> sfc geometry wkt <- sprintf('POLYGON((%s))', bb) x <- st_as_sfc(wkt, crs = 4326) # query WCS mu <- mukey.wcs(x, db = 'hi_ssurgo') # make NA (the ocean) blue plot( mu, legend = FALSE, axes = FALSE, main = metags(mu)['description'], colNA = 'royalblue' ) ## ----eval=FALSE, include=FALSE-------------------------------------------------------------------- # # # check mu names # # .is <- format_SQL_in_statement(cats(mu)[[1]]$mukey) # # .sql <- sprintf("SELECT mukey, muname FROM mapunit WHERE mukey IN %s", .is) # # knitr::kable(SDA_query(.sql)) ## ----fig.width = 6.5, fig.height=5---------------------------------------------------------------- # paste your BBOX text here bb <- '-65.7741 18.1711,-65.7741 18.3143,-65.5228 18.3143,-65.5228 18.1711,-65.7741 18.1711' # convert WKT string -> sfc geometry wkt <- sprintf('POLYGON((%s))', bb) x <- st_as_sfc(wkt, crs = 4326) # query WCS mu <- mukey.wcs(x, db = 'pr_ssurgo') # make missing data (NA; the ocean) blue plot( mu, legend = FALSE, axes = FALSE, main = metags(mu)['description'], colNA = 'royalblue' ) ## ----eval=FALSE, include=FALSE-------------------------------------------------------------------- # # # check mu names # # .is <- format_SQL_in_statement(cats(mu)[[1]]$mukey) # # .sql <- sprintf("SELECT mukey, muname FROM mapunit WHERE mukey IN %s", .is) # # knitr::kable(SDA_query(.sql)) ## ------------------------------------------------------------------------------------------------- # make a bounding box and assign a CRS (4326: GCS, WGS84) a <- st_bbox( c(xmin = -114.16, xmax = -114.08, ymin = 47.65, ymax = 47.68), crs = st_crs(4326) ) # convert bbox to sf geometry a <- st_as_sfc(a) # fetch gSSURGO map unit keys at native resolution (~30m) mu <- mukey.wcs(aoi = a, db = 'gssurgo') ## ----fig.width=8---------------------------------------------------------------------------------- # copy example grid mu2 <- mu # extract raster attribute table for thematic mapping (rat <- cats(mu2)[[1]]) # optionally use convenience function: # * returns all fields from muaggatt table # * along with map unit name # tab <- get_SDA_muaggatt(mukeys = as.numeric(rat$mukey), query_string = TRUE) .sql <- paste0( "SELECT mukey, aws050wta, aws0100wta FROM muaggatt WHERE mukey IN ", format_SQL_in_statement(as.numeric(rat$mukey)) ) # run query, result is a data.frame tab <- SDA_query(.sql) # check head(tab) # set raster categories levels(mu2) <- tab # convert grid + RAT -> stack of property grids aws <- catalyze(mu2) # plot, set a common range [0, 20] for both layers plot( aws, axes = FALSE, cex.main = 0.7, main = c( 'Plant Available Water Storage (cm)\nWeighted Mean over Components, 0-50cm', 'Plant Available Water Storage (cm)\nWeighted Mean over Components, 0-100cm' ), range = c(0, 20) ) ## ------------------------------------------------------------------------------------------------- # copy example grid mu2 <- mu # extract RAT for thematic mapping rat <- cats(mu2)[[1]] rules <- c('ENG - Construction Materials; Roadfill', 'AWM - Irrigation Disposal of Wastewater') tab <- get_SDA_interpretation( rulename = rules, method = "Weighted Average", mukeys = as.numeric(rat$mukey) ) # check head(tab) # set ordered factor levels (for nice label/legend order) tab$class_ENGConstructionMaterialsRoadfill <- factor( tab$class_ENGConstructionMaterialsRoadfill, levels = c( 'Not suited', 'Poorly suited', 'Moderately suited', 'Moderately well suited', 'Well suited', 'Not Rated' ), ordered = TRUE ) par(mar = c(4, 12, 3, 3)) boxplot( rating_ENGConstructionMaterialsRoadfill ~ class_ENGConstructionMaterialsRoadfill, cex.main = 0.7, main = 'ENG - Construction Materials; Roadfill', ylab = "", data = tab, horizontal = TRUE, # fuzzy ratings on X axis las = 1 # rotate axis labels 90 degrees ) ## ----fig.width=8---------------------------------------------------------------------------------- vars <- c( 'rating_ENGConstructionMaterialsRoadfill', 'rating_AWMIrrigationDisposalofWastewater' ) # set raster categories levels(mu2) <- tab[, c('mukey', vars)] rating <- catalyze(mu2) # inspect plot( rating, axes = FALSE, cex.main = 0.7, main = c( 'Construction Materials; Roadfill\nWeighted Mean over Components', 'Irrigation Disposal of Wastewater\nWeighted Mean over Components' ) ) ## ----fig.width = 8, fig.height = 6---------------------------------------------------------------- # copy example grid mu2 <- mu # extract RAT for thematic mapping rat <- cats(mu2)[[1]] tab <- get_SDA_property(property = 'Corrosion of Steel', method = 'DOMINANT CONDITION', mukeys = as.integer(rat$mukey), miscellaneous_areas = TRUE) # get soil data viewer standard colors for corsteel cols <- get_SDV_legend_elements("attributecolumnname = 'corsteel'") # set raster categories levels(mu2) <- tab[, c('mukey', 'corsteel')] # set active category activeCat(mu2) <- 'corsteel' # plot plot( mu2, col = cols$hex[na.omit(match(unique(tab$corsteel), cols$label))], axes = FALSE, legend = "topleft" ) ## ------------------------------------------------------------------------------------------------- # https://casoilresource.lawr.ucdavis.edu/gmap/?loc=36.57666,-96.70175,z14 # make a bounding box and assign a CRS (4326: GCS, WGS84) a <- st_bbox( c(xmin = -96.7696, xmax = -96.6477, ymin = 36.5477, ymax = 36.6139), crs = st_crs(4326) ) # fetch gSSURGO map unit keys at native resolution (~30m) mu <- mukey.wcs(aoi = a, db = 'gssurgo') plot( mu, legend = FALSE, axes = FALSE, cex.main = 0.7, main = 'gSSURGO Map Unit Key Grid' ) ## ----fig.width = 8, fig.height = 6---------------------------------------------------------------- # copy example grid mu2 <- mu # extract RAT for thematic mapping rat <- cats(mu2)[[1]] # simplified parent material group name tab <- get_SDA_pmgroupname(mukeys = as.integer(rat$mukey), miscellaneous_areas = TRUE) # set raster categories levels(mu2) <- tab[, c('mukey', 'pmgroupname')] # set active category activeCat(mu2) <- 'pmgroupname' plot(mu2, legend = "topleft", axes = FALSE) ## ----fig.width = 8, fig.height = 6---------------------------------------------------------------- # copy example grid mu2 <- mu # extract RAT for thematic mapping rat <- cats(mu2)[[1]] # simplified parent material group name tab <- get_SDA_hydric(mukeys = as.integer(rat$mukey)) levels(mu2) <- tab[, c('mukey', 'HYDRIC_RATING')] # set active category activeCat(mu2) <- 'HYDRIC_RATING' plot(mu2, legend = "topleft", axes = FALSE) ## ------------------------------------------------------------------------------------------------- # extract RAT for thematic mapping rat <- cats(mu)[[1]] # variables of interest vars <- c("dbthirdbar_r", "awc_r", "ph1to1h2o_r") # get / aggregate specific horizon-level properties from SDA # be sure to see the manual page for this function tab <- get_SDA_property(property = vars, method = "Dominant Component (Numeric)", mukeys = as.integer(rat$mukey), top_depth = 0, bottom_depth = 25) # check head(tab) # convert areasymbol into a factor easy plotting later tab$areasymbol <- factor(tab$areasymbol) # set raster categories levels(mu) <- tab[, c('mukey', vars)] # list variables in the RAT names(cats(mu)[[1]]) # convert categories associated with keys to values mu2 <- catalyze(mu) ## ----fig.width = 6, fig.height = 4---------------------------------------------------------------- plot(mu2$awc_r) ## ------------------------------------------------------------------------------------------------- plot(mu2[['dbthirdbar_r']], cex.main = 0.7, main = '1/3 Bar Bulk Density (g/cm^3)\nDominant Component\n0-25cm') plot(mu2[['awc_r']], cex.main = 0.7, main = 'AWC (cm/cm)\nDominant Component\n0-25cm') plot(mu2[['ph1to1h2o_r']], cex.main = 0.7, main = 'pH 1:1 H2O\nDominant Component\n0-25cm') ## ------------------------------------------------------------------------------------------------- # extract a BBOX like this from SoilWeb by pressing "b" bb <- '-91.6853 36.4617,-91.6853 36.5281,-91.5475 36.5281,-91.5475 36.4617,-91.6853 36.4617' wkt <- sprintf('POLYGON((%s))', bb) # init sf object from WKT x <- st_as_sfc(wkt, crs = 4326) # get gSSURGO grid here mu <- mukey.wcs(aoi = x, db = 'gssurgo') # note SSA boundary plot(mu, legend = FALSE, axes = FALSE) ## ----fig.width = 8, fig.height = 6---------------------------------------------------------------- # extract RAT for thematic mapping rat <- cats(mu)[[1]] # variables of interest vars <- c("sandtotal_r", "silttotal_r", "claytotal_r") # get thematic data from SDA # dominant component # depth-weighted average # sand, silt, clay (RV) tab <- get_SDA_property(property = vars, method = "Dominant Component (Numeric)", mukeys = as.integer(rat$mukey), top_depth = 25, bottom_depth = 50) # check head(tab) # set raster categories levels(mu) <- tab[, c('mukey', vars)] # convert mukey grid + RAT -> stack of numerical grids # retaining only sand, silt, clay via [[vars]] ssc <- catalyze(mu) # create a copy of the grid texture.class <- ssc[[1]] names(texture.class) <- 'soil.texture' # assign soil texture classes for the fine earth fraction # using sand and clay percentages values(texture.class) <- aqp::ssc_to_texcl( sand = values(ssc[['sandtotal_r']]), clay = values(ssc[['claytotal_r']]), droplevels = FALSE ) r <- c(ssc, texture.class) # graphical check plot( r, cex.main = 0.7, main = paste0(names(r), " - 25-50cm\nDominant Component") )