## ----message=FALSE, warning=FALSE--------------------------------------------- library(swaRmverse) #data_df <- trackdf::tracks #raw$set <- c(rep('ctx1', nrow(raw)/2 ), rep('ctx2', nrow(raw)/2)) raw <- read.csv(system.file("extdata/video/01.csv", package = "trackdf")) raw <- raw[!raw$ignore, ] ## Add fake context raw$context <- c(rep("ctx1", nrow(raw) / 2), rep("ctx2", nrow(raw) / 2)) data_df <- set_data_format(raw_x = raw$x, raw_y = raw$y, raw_t = raw$frame, raw_id = raw$id, origin = "2020-02-1 12:00:21", period = "0.04S", tz = "America/New_York", raw_context = raw$context ) is_geo <- FALSE data_dfs <- add_velocities(data_df, geo = is_geo, verbose = TRUE, parallelize = FALSE ) ## A list of dataframes #head(data_dfs[[1]]) print(paste("Velocity information added for", length(data_dfs), "sets.")) ## ----message=FALSE, warning=FALSE--------------------------------------------- sampling_timestep <- 0.04 time_window <- 1 # seconds smoothing_time_window <- time_window / sampling_timestep g_metr <- group_metrics_per_set(data_list = data_dfs, mov_av_time_window = smoothing_time_window, step2time = sampling_timestep, geo = is_geo, parallelize = FALSE ) summary(g_metr) ## ----message=FALSE, warning=FALSE--------------------------------------------- data_df <- pairwise_metrics(data_list = data_dfs, geo = is_geo, verbose = TRUE, parallelize = FALSE, add_coords = FALSE # could be set to TRUE if the relative positions of neighbors are needed ) #tail(data_df) ## ----message=FALSE, warning=FALSE--------------------------------------------- ### Interactive mode, if the limits of speed and polarization are unknown # new_species_metrics <- col_motion_metrics(data_df, # global_metrics = g_metr, # step2time = sampling_timestep, # verbose = TRUE, # speed_lim = NA, # pol_lim = NA # # ) new_species_metrics <- col_motion_metrics(data_df, global_metrics = g_metr, step2time = sampling_timestep, verbose = TRUE, speed_lim = 150, pol_lim = 0.3 ) # summary(new_species_metrics) ## ----message=FALSE, warning=FALSE--------------------------------------------- new_species_metrics <- col_motion_metrics_from_raw(data_df, mov_av_time_window = smoothing_time_window, step2time = sampling_timestep, geo = is_geo, verbose = TRUE, speed_lim = 150, pol_lim = 0.3, parallelize_all = FALSE ) # summary(new_species_metrics) ## ----message=FALSE, warning=FALSE--------------------------------------------- new_species_metrics$species <- "new_species_1" head(new_species_metrics) ## Un-comment bellow to save the output in order to combine it with other datasets (replace 'path2file' with appropriate local path and name). # write.csv(new_species_metrics, file = path2file.csv, row.names = FALSE) # OR R object # save(new_species_metrics, file = path2file.rda)