## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warning = FALSE, fig.width=7, fig.height=5 ) options(rmarkdown.html_vignette.check_title = FALSE) ## ----setup-------------------------------------------------------------------- library(visOmopResults) ## ----------------------------------------------------------------------------- library(PatientProfiles) library(palmerpenguins) library(dplyr) summariseIsland <- function(island) { penguins |> filter(.data$island == .env$island) |> summariseResult( group = "species", includeOverallGroup = TRUE, strata = list("year", "sex", c("year", "sex")), variables = c( "bill_length_mm", "bill_depth_mm", "flipper_length_mm", "body_mass_g", "sex"), estimates = c( "median", "q25", "q75", "min", "max", "count_missing", "count", "percentage", "density") ) |> suppressMessages() |> mutate(cdm_name = island) } penguinsSummary <- bind( summariseIsland("Torgersen"), summariseIsland("Biscoe"), summariseIsland("Dream") ) ## ----------------------------------------------------------------------------- tidyColumns(penguinsSummary) ## ----------------------------------------------------------------------------- colnames(penguinsSummary) ## ----------------------------------------------------------------------------- penguinsSummary |> filter(variable_name == "bill_depth_mm") |> filterStrata(year != "overall", sex == "overall") |> scatterPlot( x = "year", y = "median", line = TRUE, point = TRUE, ribbon = FALSE, facet = "cdm_name", colour = "species" ) ## ----------------------------------------------------------------------------- penguinsSummary |> filter(variable_name %in% c("bill_length_mm", "bill_depth_mm"))|> filterStrata(year == "overall", sex == "overall") |> filterGroup(species != "overall") |> scatterPlot( x = "density_x", y = "density_y", line = TRUE, point = FALSE, ribbon = FALSE, facet = cdm_name ~ variable_name, colour = "species" ) + ggplot2::facet_grid(cdm_name ~ variable_name, scales = "free_x") ## ----------------------------------------------------------------------------- penguinsSummary |> filter(variable_name == "flipper_length_mm") |> filterStrata(year != "overall", sex %in% c("female", "male")) |> scatterPlot( x = c("year", "sex"), y = "median", ymin = "q25", ymax = "q75", line = FALSE, point = TRUE, ribbon = FALSE, facet = cdm_name ~ species, colour = "sex", group = c("year", "sex") ) + ggplot2::coord_flip() + ggplot2::labs(y = "Flipper length (mm)") ## ----------------------------------------------------------------------------- penguinsSummary |> filter(variable_name %in% c( "flipper_length_mm", "bill_length_mm", "bill_depth_mm")) |> filterStrata(sex == "overall") |> scatterPlot( x = "year", y = "median", ymin = "min", ymax = "max", line = FALSE, point = TRUE, ribbon = TRUE, facet = cdm_name ~ species, colour = "variable_name", group = c("variable_name") ) ## ----------------------------------------------------------------------------- penguinsSummary |> filter(variable_name == "number records") |> filterGroup(species != "overall") |> filterStrata(sex != "overall", year != "overall") |> barPlot( x = "year", y = "count", colour = "sex", facet = cdm_name ~ species ) ## ----------------------------------------------------------------------------- penguinsSummary |> filter(variable_name == "body_mass_g") |> boxPlot(x = "year", facet = c("cdm_name", "species"), colour = "sex") ## ----------------------------------------------------------------------------- penguinsSummary |> filter(variable_name == "body_mass_g") |> boxPlot(x = "year", facet = cdm_name ~ species, colour = "sex") ## ----------------------------------------------------------------------------- penguinsSummary |> filter(variable_name == "body_mass_g") |> filterGroup(species != "overall") |> filterStrata(sex %in% c("female", "male"), year != "overall") |> boxPlot(facet = cdm_name ~ species + sex, colour = "year") ## ----------------------------------------------------------------------------- penguinsTidy <- penguinsSummary |> filter(!estimate_name %in% c("density_x", "density_y")) |> # remove density for simplicity tidy() penguinsTidy |> glimpse() ## ----------------------------------------------------------------------------- penguinsTidy |> class() ## ----------------------------------------------------------------------------- penguinsTidy |> filter( variable_name == "body_mass_g", species != "overall", sex %in% c("female", "male"), year != "overall" ) |> boxPlot(facet = cdm_name ~ species + sex, colour = "year") ## ----------------------------------------------------------------------------- library(ggplot2) penguinsSummary |> filter(variable_name == "number records") |> tidy() |> ggplot(aes(x = year, y = sex, fill = count, label = count)) + geom_tile() + scale_fill_viridis_c(trans = "log") + geom_text() + facet_grid(cdm_name ~ species) ## ----------------------------------------------------------------------------- penguinsSummary |> filter( group_level != "overall", strata_name == "year &&& sex", !grepl("NA", strata_level), variable_name == "body_mass_g") |> boxPlot(facet = cdm_name ~ species + sex, colour = "year") + ylim(c(0, 6500)) + labs(x = "My custom x label") + theme(legend.position = "top") ## ----eval=FALSE--------------------------------------------------------------- # ggsave( # "figure8.png", plot = last_plot(), device = "png", width = 15, height = 12, # units = "cm", dpi = 300)