/* verify_mbedtls.c * * Copyright (c) 2018 Apple Computer, Inc. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * DNS SIG(0) signature verification for DNSSD SRP using mbedtls. * * Provides functions for generating a public key validating context based on SIG(0) KEY RR data, and * validating a signature using a context generated with that public key. Currently only ECDSASHA256 is * supported. */ #include #include #include #include #include "srp.h" #include "dns-msg.h" #include "srp-crypto.h" // Given a DNS message, a signature, and a public key, validate the message bool srp_sig0_verify(dns_wire_t *message, dns_rr_t *key, dns_rr_t *signature) { mbedtls_ecp_point pubkey; mbedtls_ecp_group group; mbedtls_sha256_context sha; int status; char errbuf[128]; uint8_t hash[ECDSA_SHA256_HASH_SIZE]; mbedtls_mpi r, s; uint8_t *rdata; size_t rdlen; // The key algorithm and the signature algorithm have to match or we can't validate the signature. if (key->data.key.algorithm != signature->data.sig.algorithm) { return false; } // Key must be the right length (DNS ECDSA KEY isn't compressed). if (key->data.key.len != ECDSA_KEY_SIZE) { return false; } // Currently only support ecdsa if (signature->data.sig.algorithm != dnssec_keytype_ecdsa) { return false; } // Make sure the signature is the right size. if (signature->data.sig.len != ECDSA_SHA256_SIG_SIZE) { return false; } // Take the KEY RR and turn it into a public key we can use to check the signature. // Initialize the ECP group (SECP256). mbedtls_ecp_point_init(&pubkey); mbedtls_ecp_group_init(&group); mbedtls_ecp_group_load(&group, MBEDTLS_ECP_DP_SECP256R1); mbedtls_mpi_init(&r); mbedtls_mpi_init(&s); mbedtls_sha256_init(&sha); memset(hash, 0, sizeof hash); if ((status = mbedtls_mpi_read_binary(&pubkey.X, key->data.key.key, ECDSA_KEY_PART_SIZE)) != 0 || (status = mbedtls_mpi_read_binary(&pubkey.Y, key->data.key.key + ECDSA_KEY_PART_SIZE, ECDSA_KEY_PART_SIZE)) != 0) { mbedtls_strerror(status, errbuf, sizeof errbuf); ERROR("mbedtls_mpi_read_binary: reading key: " PUB_S_SRP, errbuf); } mbedtls_mpi_lset(&pubkey.Z, 1); if ((status = mbedtls_mpi_read_binary(&r, signature->data.sig.signature, ECDSA_SHA256_SIG_PART_SIZE)) != 0 || (status = mbedtls_mpi_read_binary(&s, signature->data.sig.signature + ECDSA_SHA256_SIG_PART_SIZE, ECDSA_SHA256_SIG_PART_SIZE)) != 0) { mbedtls_strerror(status, errbuf, sizeof errbuf); ERROR("mbedtls_mpi_read_binary: reading signature: " PUB_S_SRP, errbuf); } // The hash is across the message _before_ the SIG RR is added, so we have to decrement arcount before // computing it. message->arcount = htons(ntohs(message->arcount) - 1); // And the SIG RRDATA that we hash includes the canonical version of the name, not whatever bits // are in the actual wire format message, so we have to just make a copy of it. rdlen = SIG_STATIC_RDLEN + dns_name_wire_length(signature->data.sig.signer); rdata = malloc(rdlen); if (rdata == NULL) { ERROR("no memory for SIG RR canonicalization"); return 0; } memcpy(rdata, &message->data[signature->data.sig.start + SIG_HEADERLEN], SIG_STATIC_RDLEN); if (!dns_name_to_wire_canonical(rdata + SIG_STATIC_RDLEN, rdlen - SIG_STATIC_RDLEN, signature->data.sig.signer)) { // Should never happen. ERROR("dns_name_wire_length and dns_name_to_wire_canonical got different lengths!"); return 0; } // First compute the hash across the SIG RR, then hash the message up to the SIG RR if ((status = mbedtls_sha256_starts_ret(&sha, 0)) != 0 || (status = srp_mbedtls_sha256_update_ret("rdata", &sha, rdata, rdlen)) != 0 || (status = srp_mbedtls_sha256_update_ret("message", &sha, (uint8_t *)message, signature->data.sig.start + (sizeof *message) - DNS_DATA_SIZE)) != 0 || (status = srp_mbedtls_sha256_finish_ret(&sha, hash)) != 0) { // Put it back message->arcount = htons(ntohs(message->arcount) + 1); mbedtls_strerror(status, errbuf, sizeof errbuf); ERROR("mbedtls_sha_256 hash failed: " PUB_S_SRP, errbuf); return 0; } message->arcount = htons(ntohs(message->arcount) + 1); free(rdata); // Now check the signature against the hash status = mbedtls_ecdsa_verify(&group, hash, sizeof hash, &pubkey, &r, &s); if (status != 0) { mbedtls_strerror(status, errbuf, sizeof errbuf); ERROR("mbedtls_ecdsa_verify failed: " PUB_S_SRP, errbuf); return 0; } return 1; } // Function to copy out the public key as binary data void srp_print_key(srp_key_t *key) { mbedtls_ecp_keypair *ecp = mbedtls_pk_ec(key->key); char errbuf[64]; uint8_t buf[ECDSA_KEY_SIZE]; uint8_t b64buf[((ECDSA_KEY_SIZE * 4) / 3) + 6]; size_t b64len; int status; // Currently ECP only. if ((status = mbedtls_mpi_write_binary(&ecp->Q.X, buf, ECDSA_KEY_PART_SIZE)) != 0 || (status = mbedtls_mpi_write_binary(&ecp->Q.Y, buf + ECDSA_KEY_PART_SIZE, ECDSA_KEY_PART_SIZE)) != 0) { mbedtls_strerror(status, errbuf, sizeof errbuf); ERROR("mbedtls_mpi_write_binary: " PUB_S_SRP, errbuf); return; } status = mbedtls_base64_encode(b64buf, sizeof b64buf, &b64len, buf, ECDSA_KEY_SIZE); if (status != 0) { mbedtls_strerror(status, errbuf, sizeof errbuf); ERROR("mbedtls_mpi_write_binary: " PUB_S_SRP, errbuf); return; } fputs("thread-demo.default.service.arpa. IN KEY 513 3 13 ", stdout); fwrite(b64buf, b64len, 1, stdout); putc('\n', stdout); } // Local Variables: // mode: C // tab-width: 4 // c-file-style: "bsd" // c-basic-offset: 4 // fill-column: 108 // indent-tabs-mode: nil // End: